
Design Patterns

COURSE NOTES
Updated July 2021

Design Patterns | 1

Table of Contents
Course Overview 5

Module 1: Introduction to Design Patterns: Creational and
Structural Patterns 6

Introduction to Design Patterns 7
Gang of Four’s Pattern Catalogue 8

Pattern Languages 9
Categories of Patterns 10

Creational Patterns 10

Structural Patterns 10

Behavioural Patterns 11

Singleton Pattern 11
Factory Method Pattern 14

Factory Objects 14
Benefits of Factory Objects 16
Factory Method Pattern 17
UML Diagrams 18

Façade Pattern 20
Step 1: Design the Interface 22
Step 2: Implement the Interface with one or more classes 22
Step 3: Create the façade class and wrap the classes that
implement the interface 23
Step 4: Use the façade class to access the subsystem 24

Adapter Pattern 25
Step 1: Design the target interface 26
Step 2: Implement the target interface with the adapter class27
Step 3: Send the request from the client to the adapter using
the target interface 28

Composite Pattern 29
Step 1: Design the interface that defines the overall type 32
Step 2: Implement the composite class 32
Step 3: Implement the leaf class 34

Proxy Pattern 36
Step 1: Design the subject interface 38

Design Patterns | 2

Step 2: Implement the real subject class 38
Step 3: Implement the proxy class 39

Decorator Pattern 41
Step 1: Design the component interface 44
Step 2: Implement the interface with your base concrete
component class 44
Step 3: Implement the interface with your abstract decorator
class 45
Step 4: Inherit from the abstract decorator and implement the
component interface with concrete decorator classes 46

Module 2: Behavioural Design Patterns 49
Template Method Pattern 51
Chain of Responsibility Pattern 54
State Pattern 57
Command Pattern 62

Purposes of the Command Pattern 63
Benefits of the Command Pattern 66

Observer Pattern 66

Module 3: Working with Design Patterns & Anti-patterns 71
MVC Pattern 73

Model 74
View 76
Controller 78

Design Principles Underlying Design Patterns 79
Open/Close Principle 79
Dependency Inversion Principle 82

Low-Level Dependency 83

High-Level Dependency 84

Composing Object Principle 86
Interface Segregation Principle 88
Principle of Least Knowledge 91

Anti-Patterns & Code Smells 93
Comments 94
Duplicate Code 95
Long Method 95
Large Class 96
Data Class 97
Data Clumps 97

Design Patterns | 3

Long Parameter List 98
Divergent Class 99
Shotgun Surgery 99
Feature Envy 100
Inappropriate Intimacy 100
Message Chains 101
Primitive Obsession 101
Switch Statements 102
Speculative Generality 102
Refused Request 103

Course Resources 103
Course Readings 104
Glossary 104

Design Patterns | 4

Course Overview

Welcome to the second course in the Software Design and

Architecture specialization, brought to you in partnership by

the University of Alberta and Coursera. This course focuses on

design patterns. Design issues in applications can be

resolved through design patterns commonly applied by

experts. This second course extends your knowledge of

object-oriented analysis and design by covering design patterns

used in interactive applications. Through a survey of

established design patterns, you will gain a foundation for

more complex software applications. This course will also

explain several design principles that you can use to make your

software more reusable, flexible, and maintainable. Finally, you

will learn how to identify problematic software designs by

referencing what is known as a catalog of code smells.

Design Patterns | 5

Module 1: Introduction to Design Patterns:
Creational and Structural
Patterns

Design Patterns | 6

Introduction to Design Patterns

The first course of this specialization focused on

object-oriented analysis and design, including focusing on the

major design principles of abstraction, encapsulation,

decomposition, and generalization. This second course will

extend this knowledge by teaching you how to apply design

patterns to address design issues.

Over the course of your career in software engineering, you will

find that the same design problems reoccur. There are many

ways to deal with these problems, but more flexible or reusable

solutions are preferred in the industry. One of these preferred

methods is that of design patterns.

A design pattern is a practical proven solution to a recurring

design problem. It allows you to use previously outlined

solutions that expert developers have often used to solve a

software problem, so you do not need to build a solution from

the basics of object-oriented programming principles every

time. These solutions are not just theoretical – they are actual

solutions used in the industry. Design patterns may also be

used to help fix tangled, structureless software code, also

known as “spaghetti code.”

A good way to think of design

patterns is like recipes in a

cookbook, which have been

experimented upon and tested

by many people over time. A

particular recipe may become

preferred because it creates the

best-tasting dish. Similarly,

design patterns have been

experimented upon and tested

by developers over many years.

Design patterns outline

solutions that often create the

best outcome.

It is not always obvious which design pattern to use to solve a

software design problem, especially as many design patterns

exist. Deciding which one to use is similar to a game of chess –

there are many possible moves and strategies that can be used

to win in chess. Through experience and examining the

Design Patterns | 7

situation on the board, you will become better at judging which

strategy to use to win a game or solve a problem. Like chess,

many people start out only knowing basics, such as elements of

language syntax. But, practice and experience will make you

better at selecting which design patterns to use for different

problems. Some people even become design experts who know

the design patterns to use in solving particular software design

problems!

It is important to understand that design patterns are not just a

concrete set of source code that you memorize and put into

your software, like a Java library or framework. Instead, design

patterns are more conceptual. They are knowledge that you can

apply within your software design to guide its structure and

make it more flexible and reusable. In other words, design

patterns help software developers so that they have a guide to

help them solve design problems the way an expert might, so

not everything needs to be built from scratch. Design patterns

serve almost like a coach to help developers reach their full

potential!

A strong advantage of design patterns is that they have already

been proven by experts. This means that you do not need to go

through the trials they have, and you go straight to creating

better-written software.

Another advantage of design patterns is that they help create a

design vocabulary. This means that design patterns provide a

simplified means of discussing design solutions, so they do not

need to be explained over and over. For example, design

patterns might give patterns names, making it easier to discuss

them. This saves time and ensures that everyone is referring to

the same pattern. This leaves less room for misunderstanding.

One of the most famous books on design patterns is Design

Patterns: Elements of Reusable Object-Oriented Software by

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

This course will draw upon a selection of the patterns

presented in this book.

Gang of Four’s Pattern Catalogue

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,

the authors of Design Patterns: Elements of Reusable

Object-Oriented Software, have been collectively nicknamed the

Gang of Four. These authors wrote their book based on their

Design Patterns | 8

own experiences as developers. When each had developed

programs and graphical applications, they had discovered

patterns emerging in their design solutions. As a group, they

formalized those patterns into a reference book.

The patterns developed by the Gang of Four were organized to

be readable and were often named after their purpose. The

grouping of patterns together formed Gang of Four’s design

pattern catalog.

The Gang of Four’s particular design pattern catalog is not

actually like a recipe book, as described in the last lesson, but

is closer to a list of tropes. You cannot pull universal patterns

from the catalog to use in your code, like a recipe. Instead,

design patterns in software reoccur in the same way tropes

reoccur in storytelling.

A trope is a storytelling device or convention often found in

fiction. Films and TV shows use a pattern of storytelling. A

well-known example of a trope is the “hero’s journey.” This

trope outlines a common pattern where a hero goes on an

adventure and faces trials and wins a victory before coming

home changed or transformed. This trope, or storytelling

device, can be found in thousands of pieces of fiction. Similarly,

occurrences of the same pattern can be found in thousands of

programs.

An example of a simple pattern would be defining and calling

methods.

Learning to look for specific design patterns will help you

better recognize object-oriented design elsewhere.

Pattern Languages

The patterns and solutions of the Gang of Four’s catalog serve

a variety of different purposes. Depending on the context of

the problem, you would select a different pattern language to

use. A pattern language is a collection of patterns that are

related to a certain problem space. For example, the pattern

language you select for designing accounting software would

be different from those you select for designing gaming

software. A pattern language for accounting software would

include double-entry bookkeeping, while a pattern language for

gaming software would include design words such as

encounters, quests, and players.

Design Patterns | 9

Based on context, you must decide which ones will suit your

problem or design issue the best. However, sometimes you

must consider trade-offs in design – some patterns may be

more resource-intensive.

Categories of Patterns

The Gang of Four’s pattern catalog contains 23 patterns. These

patterns can be sorted into three different categories:

creational patterns, structural patterns, and behavioral

patterns. Some patterns might have elements that allow them

to span all of the categories – it is not always clear cut which

categories a pattern falls under. These categories were used to

simply organize and characterize the patterns in their book.

Creational Patterns

Creational patterns tackle how you handle creating or

cloning new objects. Cloning an object occurs when you are

creating an object that is similar to an existing one, and instead

of instantiating a new object, you clone existing objects instead

of instantiating them.

Creational patterns depend on the programming language

being used. Languages without the notion of classes, such as

Javascript, would encourage you to clone an object and expand

it to meet the purposes of those particular instances, called

prototypes. Javascript allows for changes to these prototypes at

runtime. Languages that rely on classes, however, such as Java

and C#, instantiate objects using specific classes defined at

compile time.

The different ways of creating objects will greatly influence how

a problem is solved. Therefore, different languages therefore

impact what patterns are possible to use.

Structural Patterns

Structural patterns describe how objects are connected to

each other. These patterns relate to the design principles of

decomposition and generalization, as discussed in the first

course in this specialization.

There are many different ways that you can structure objects

depending on the relationship you’d like between them. Not

only do structural patterns describe how different objects have

relationships, but they also describe how subclasses and

Design Patterns | 10

classes interact through inheritance. Structural patterns use

these relationships and describe how they should work to

achieve a particular design goal. Each structural pattern

determines the various suitable relationships among the

objects.

A good metaphor for considering structural patterns is that of

pairing different kinds of foods together: flavor determines

what ingredients can be mixed together to form a suitable

relationship. Some relationships combine ingredients together,

such as chickpeas and garlic in hummus. Some relationships

still combine ingredients, but those ingredients may maintain

some independence, like a salad of mixed vegetables. Some

relationships allow a pairing of ingredients, without a physical

combination, like wine and cheese.

Behavioral Patterns

Behavioral patterns focus on how objects distribute work

and describe how each object does a single cohesive function.

Behavioral patterns also focus on how independent objects

work towards a common goal.

A good metaphor for considering behavioral patterns is that of

a racing car pit crew at a track. Every member of the crew has a

role, but together they work as a team to achieve a common

goal. Similarly, a behavioral pattern lays out the overall goal

and purpose for each object.

Singleton Pattern

A singleton is a creational pattern, which describes a way to

create an object. It is a powerful technique, but it is also one of

the simplest examples of a design pattern.

A singleton design pattern only has one object of a class. This

might be desirable in order to circumvent conflicts or

inconsistencies, by keeping clear which object the program

should draw from. For example, the preferences of an app, the

print queue of your printer, or the software driver for a device

are all objects where it is preferable to only have one. If there

are multiple instances, it can be confusing for the program

output.

Another goal of the singleton design pattern is that the single

object is globally accessible within the program.

Design Patterns | 11

In order to implement a singleton design pattern, the best

practice is to build the “one and only one” goal into the class

itself so that creating another instance of a Singleton class is

not even possible. This “codifies” the design intent within the

software. This is necessary if working on a large project or on

projects with multiple developers, but it is helpful even on

smaller or individual projects.

Let us examine this in code.

If a class has a public constructor, an object of this class can be

instantiated at any time.

public class notSingleton {

//Public Constructor

public notSingleton() {

..

}

}

Instead, if the class has a private constructor, then the

constructor cannot be called from outside the class. Although

this seems to prevent creating an object of the class, there are

two key components for getting around this.

First, declare a class variable. In this case, it is called “unique

Instance.” This class variable will refer to the one instance of

your Singleton class. As the variable is private, it can only be

modified within the class.

Second, create a public method in the class that will create an

instance of this class, but only if an instance does not exist

already. In this case, the method is called “getInstance.” It will

check if the “unique Instance” variable is null. If it is null, then it

will instantiate the class and set this variable to reference the

object. On the other hand, if the “unique Instance” class

variable currently references an object, meaning that there is

already an object of this class, then the method will simply

return that object. As the getInstance() method is public, it

can be called globally and used to create one instance of the

class. In a sense, it replaces the normal constructor.

Design Patterns | 12

public class ExampleSingleton { // lazy construction

// the class variable is null if no instance is

// instantiated

private static ExampleSingleton uniqueInstance = null;

private ExampleSingleton() {

...

}

// lazy construction of the instance

public static ExampleSingleton getInstance() {

if (uniqueInstance == null) {

uniqueInstance = new ExampleSingleton();

}

return uniqueInstance;

}

...

}

In the example above, the regular constructor is hidden. Other

classes are forced to call the public “getInstance” method.

This puts in place basic gatekeeping and ensures that only one

object of this class is created. The same method can be used to

globally reference a single object if it has already been created.

An advantage of this version of a Singleton class is lazy

creation. Lazy creation means that the object is not created

until it is truly needed. This is helpful, especially if the object is

large. As the object is not created until the “getInstance”

method is called, the program is more efficient.

There are trade-offs to the Singleton design principle. If there

are multiple computing threads running, there could be issues

caused by the threads trying to access the shared single object.

In real use, there may be variations of how Singleton is realized

because design patterns are defined by purpose and not exact

code. The intent of a Singleton pattern is to provide global

access to a class that is restricted to one instance. In general,

this is achieved by having a private constructor with a public

Design Patterns | 13

method that instantiates the class “if” it is not already

instantiated.

Factory Method Pattern

The Factory Method Pattern is a creational pattern. In order

to understand the Factory method pattern, we must first

understand factory objects.

Factory Objects

A factory object operates like a factory in the real world, and

creates objects. Factory objects make software easier to

maintain, change, test, and reuse because it deals with the

problem of creating objects without having to specify the class.

The methods that use these factories can then focus on other

behaviors.

Imagine a situation where you have software that implements

an online store that sells knives. Perhaps when the store first

opens, you only produce steak knives and chef’s knives. You

would have a superclass with those two subclasses. In your

system, first, a knife object is created. Conditionals then

determine which subclass of Knife is actually instantiated. This

act of instantiating a class to create an object of a specific type

is known as concrete instantiation. In Java, concrete

instantiation is indicated with the operator “new.”

However, imagine that the store is successful and adds more

knife types to sell. New subclasses will need to be added, such

as BreadKnife, ParingKnife, or FilletKnife. The list of

conditionals would need to grow and grow as new knife types

are added. However, the methods of the knife, such as

sharpening, polishing, and packaging, would likely stay the

same, no matter the type of knife. This creates a complicated

situation. Instead of making Knive in the store, it may be

better to create them in a Factory object.

A factory object is an object whose role is to create “product”

objects of particular types. In this example, the methods of

sharpening, polishing, and packaging would remain in the

orderKnife method. However, the responsibility of creating

the product will be delegated to another object: a “Knife

Factory.” The code for deciding which knife to create and the

code for deciding which subclass of Knife to instantiate, are

moved into the class for this factory.

Design Patterns | 14

Below is an example of the code that might be used for this

example:

public class KnifeFactory {

public Knife createKnife(String knifeType) {

Knife knife = null;

// create Knife object

if (knifeType.equals("steak")) {

knife = new SteakKnife();

} else if (knifeType.equals("chefs")) {

knife = new ChefsKnife();

}

return knife;

}

}

The code to create a Knife object has been moved into a

method of a new class called KnifeFactory. This allows the

KnifeStore class to be a client for the KnifeFactory. The

KnifeFactory object to use is passed into the constructor for

the KnifeStore class. Instead of performing concrete

instantiation itself, the orderKnife method delegates the task to

the factory object.

public class KnifeStore {

private KnifeFactory factory;

// require a KnifeFactory object to be passed

// to this constructor:

public KnifeStore(KnifeFactory factory) {

this.factory = factory;

}

public Knife orderKnife(String knifeType) {

Knife knife;

//use the create method in the factory

knife = factory.createKnife(knifeType);

Design Patterns | 15

//prepare the Knife

knife.sharpen();

knife.polish();

knife.package();

return knife;

}

}

Concrete instantiation is the primary purpose of Factories. In

general, a factory object is an instance of a factory class, which

has a method to create product objects.

Benefits of Factory Objects

There are numerous benefits to using factory objects. One of

these benefits is that it is much simpler to add new types of an

object to the object factory without modifying the client code.

Instead of hunting down multiple snippets of similar

instantiation code, subclasses can simply be added or removed

in the Factory. This only requires changing code in the Factory,

or to the concrete instantiation, and not the client method.

Factories allow client code to operate on generalizations. This

is known as coding to an interface, not an

implementation: the client method does not need to name

concrete knife classes and now deals with a Knife

“generalization.” As long as the client code receives the object

it expects, it can satisfy its responsibilities without worrying

about the details of object creation.

The use of the word “factory” serves as a good metaphor here.

Using Factory objects is similar to using a factory in real life to

create knives – the stores do not usually make the knives

themselves, but get them from a factory. In fact, a factory may

have multiple clients that they make knives for! If the factory

changes how knives are made, the stores themselves will not

care as long as they still receive knives of the right types.

Essentially, using factory objects means that you have cut out

redundant code and made the software easier to modify,

particularly if there are multiple clients that want to instantiate

the same set of classes. In other words, if many parts of the

software want to create the same objects, factory objects are

Design Patterns | 16

useful tools. Subclasses of the factory class can even become

their own specialized factories!

Factory Method Pattern

The factory object is not actually a design pattern onto itself.

The Factory method pattern does not use a factory object to

create the objects; instead, the Factory method uses a separate

“method” in the same class to create objects. The power of the

Factory method comes in particular from how they create

specialized product objects.

Generally, in order to create a “specialized” product object, a

Factory Object approach would subclass the factory class. For

example, a subclass of the KnifeFactory called

BudgetKnifeFactory would make BudgetChefsKnife and

BudgetSteakKnife product objects.

A Factory Method approach, however, would use a

BudgetKnifeStore subclass of KnifeStore. The

BudgetKnifeStore has a “Factory Method” that is responsible

for creating BudgetChefsKnife and BudgetSteakKnife

product objects instead. This design pattern’s intent is to

define an interface for creating objects but lets the subclasses

decide which class to instantiate. So, instead of working with a

factory object, we specialize or subclass the class that uses the

Factory Method. Each subclass must define its own Factory

Method. This is known as letting the subclasses decide how

objects are made.

Let us examine this as code.

public abstract class KnifeStore {

public Knife orderKnife(String knifeType) {

Knife knife;

// now creating a knife is a method in the class

knife = createKnife(knifeType);

knife.sharpen();

knife.polish();

knife.package();

return knife;

}

abstract Knife createKnife(String type);

}

Design Patterns | 17

In this example, a KnifeStore is abstract, and cannot be

instantiated. Instead, subclasses such as BudgetKnifeStore

inherit the orderKnife method. The orderKnife method uses

a Factory, but it is a factory method, createKnife(). It is

declared in the superclass, but it is abstract and empty. It is

abstract because we want the Factory method to be defined by

the subclasses. When a KnifeStore subclass is defined, it

“must” define this createKnife method.

Let us examine this subclass as code.

public BudgetKnifeStore extends KnifeStore {

//up to any subclass of KnifeStore to define this method

Knife createKnife(String knifeTYpe) {

if (knifeType.equals(“steak”)) {

return new BudgetSteakKnife();

} else if (knifeType.equals(“chefs”)) {

return new BudgetChefsKnife();

}

//.. more types

else return null;

}

}

Because the BudgetKnifeStore is a subclass of KnifeStore, it

inherits the orderKnife method. The orderKnife method can

be run from any subclass of KnifeStore.

UML Diagrams

A class’s subclasses will all inherit from the same method.

However, each subclass must define its own methods as well.

This can be represented using UML diagrams. Let us examine a

UML diagram based on the Knife Store example used

throughout this lesson.

Design Patterns | 18

In this diagram, the “Knife” and “KnifeStore” classes are

italicized to indicate that they are abstract classes that cannot

be instantiated. Instead, their subclasses must be defined. In

this case, there is only one subclass for Knife, but you could

have several more. Similarly, there is only one KnifeStore in

this example, but theoretically, several more could exist, which

would make other types of knives. Note that the createKnife()

method is also abstract under the KnifeStore class. This

indicates that any subclass of Knife Store must define this

method.

In summary, this diagram indicates to us that

BudgetKnifeStore, and any other KnifeStore subclass

defined must have its own createKnife() method.

This structure is the core of the Factory Method Design Pattern.

We can abstract out this example to demonstrate a more

general structure.

There should be an abstract Creator class that contains

methods that only operate on generalizations. The Factory

Method is declared by the Creator abstractly, so each Concrete

Creator class is obliged to provide a Factory Method.

There should also be a subclass of the abstract Creator class, a

Concrete Creator that is responsible for concrete instantiation.

The Concrete Creator inherits methods from the abstract

Creator.

Design Patterns | 19

There should be a factoryMethod() in the concrete creator

subclass. Every time a Concrete Creator subclass is added to

the design, the factoryMethod() must be defined to make the

right products. This is how the subclass “decides” to create

objects.

Finally, the Product superclass generalizes the Concrete

Products.

The general structure of a Factory Method pattern is illustrated

in the UML diagram below.

The methods of the Concrete Creator class only operate on the

general Product, never the Concrete Products. The Concrete

Products are made by the Concrete Creator. The type of

product made is decided by which Concrete Creator is made.

If object creation is separate from other behavior, the code

becomes cleaner to read and easier to maintain or change. The

client code is simplified. The code becomes more extensible,

and inheritance allows for the specialization of object creation.

Façade Pattern

As systems or parts of systems become larger, they also

become more complex. This is not necessarily a bad thing – if

the scope of a problem is large, it may require a complex

Design Patterns | 20

solution. Client classes function better with a simpler

interaction, however. The façade design pattern attempts to

resolve this issue by providing a single, simplified interface for

client classes to interact with a subsystem. It is a structural

design pattern.

A façade is a wrapper class that encapsulates a subsystem in

order to hide the subsystem’s complexity; it acts as a point of

entry into a subsystem without adding more functionality in

itself. The wrapper class allows a client class to interact with

the subsystem through the façade. A façade might be

compared metaphorically to a waiter or salesperson, who hides

all the extra work to be done in order to purchase a good or

service.

A façade design pattern should therefore be used if there is a

need to simplify the interaction with a subsystem for client

classes and if there is a need for a class to instantiate other

classes within your system and to provide these instances to

another class. Often façade design patterns combine interface

implementation by one or more classes, which then gets

wrapped by the façade class. This can be explained through a

number of steps.

1. Design the interface.

2. Implement the interface with one or more classes.

3. Create the façade class and wrap the classes that

implement the interface.

4. Use the façade class to access the subsystem.

Let us examine each of these steps with an example for a bank

system.

In the UML diagram below, we can see that a BankService

class acts as a façade for Chequing, Saving, and Investment

classes. As all three accounts implement the iAccount

interface, the BankService class wraps the account interface

and classes and presents a simpler “front” for the Customer

client class.

Design Patterns | 21

Let us look at how to do this with code for each step outlined

above.

Step 1: Design the Interface

First, create an interface that will be implemented by the

different account classes, but will not be known to the

Customer class.

public interface IAccount {

public void deposit(BigDecimal amount);

public void withdraw(BigDecimal amount);

public void transfer(BigDecimal amount);

public int getAccountNumber();

}

Step 2: Implement the Interface with one or more
classes

Implement the interface with classes that will be wrapped with

the façade class. Note that in this simple example, only one

interface is being implemented and hidden, but in practice, a

Design Patterns | 22

façade class can be used to wrap all the interfaces and classes

for a subsystem.

Instructor’s Note: Remember that interfaces allow the creation
of subtypes! This means that in this example,
Chequing, Saving, and Investment are subtypes
of IAccount, and they are expected to behave like
an account type.

public class Chequing implements IAccount { … }

public class Saving implements IAccount { … }

public class Investment implements IAccount { … }

Step 3: Create the façade class and wrap the
classes that implement the interface

The BankService class is the façade. Its public methods are

simple to use and show no hint of the underlying interface and

implementing classes. The information hiding principle is

used here to prevent client classes from “seeing” the account

objects, and how these accounts behave – note that access

modifiers for each Account have been set to private.

public class BankService {

private Hashtable<int, IAccount> bankAccounts;

public BankService() {

this.bankAccounts = new Hashtable<int, IAccount>

}

public int createNewAccount(String type, BigDecimal

initAmount) {

IAccount newAccount = null;

switch (type) {

case "chequing":

newAccount = new Chequing(initAmount);

break;

case "saving":

newAccount = new Saving(initAmount);

Design Patterns | 23

break;

case "investment":

newAccount = new Investment(initAmount);

break;

default:

System.out.println("Invalid account type");

break;

}

if (newAccount != null) {

this.bankAccounts.put(newAccount.getAccountNumber(),

newAccount);

return newAccount.getAccountNumber();

}

return -1;

}

public void transferMoney(int to, int from, BigDecimal

amount) {

IAccount toAccount = this.bankAccounts.get(to);

IAccount fromAccount = this.bankAccounts.get(from);

fromAccount.transfer(toAccount, amount);

}

}

Step 4: Use the façade class to access the
subsystem

With the façade class in place, the client class can access

accounts through the methods of the BankService class. The

BankService class will tell the client what type of actions it will

allow the client to call upon and then it will delegate that action

to the appropriate Account object.

public class Customer {

public static void main(String args[]) {

BankService myBankService = new BankService();

int mySaving = myBankService.createNewAccount("saving",

new BigDecimal(500.00));

Design Patterns | 24

int myInvestment =

myBankService.createNewAccount("investment", new

BigDecimal(1000.00));

myBankService.transferMoney(mySaving, myInvestment, new

BigDecimal(300.00));

}

}

Façade design patterns draw on a number of different design

principles. Subsystem classes are encapsulated into a façade

class. Encapsulation is also demonstrated through information

hiding subsystem classes from client classes. This also

represents a separation of concerns.

In summary, the façade design pattern:

● Hides the complexity of a subsystem by encapsulating it

behind a unifying wrapper called a façade class.

● Removes the need for client classes to manage a

subsystem on their own, which results in less coupling

between the subsystem and the client classes.

● Handles instantiation and redirection of tasks to the

appropriate class within the subsystem.

● Provides client classes with a simplified interface for the

subsystem.

● Acts simply as a point of entry to a subsystem and does

not add more functional subsystems.

Adapter Pattern

Physically, an adapter is a device that is used to connect pieces

of equipment that cannot be connected directly. Software

systems may also face similar issues: not all systems have

compatible software interfaces. In other words, the output of

one system may not conform to the expected input of another

system. This frequently happens when a pre-existing system

needs to incorporate third-party libraries or needs to connect to

other systems. The adapter design pattern facilitates

communication between two existing systems by providing a

compatible interface. It is a structural design pattern.

The adapter design pattern consists of several parts.

Design Patterns | 25

1. A client class. This class is the part of your system that

wants to use a third-party library or external system.

2. An adaptee class. This class is the third-party library or

external system that is to be used.

3. An adapter class. This class sits between the client and

the adaptee. The adapter conforms to what the client is

expecting to see, by implementing a target interface.

The adapter also translates the client request into a

message that the adaptee will understand, and returns

the translated request to the adaptee. The adapter is a

kind of wrapper class.

4. A target interface. This is used by the client to send a

request to the adapter.

Translated into a diagram, the pattern looks as below:

Implementation of an adapter design pattern can also be

broken down into steps.

1. Design the target interface.

2. Implement the target interface with the adapter class.

3. Send the request from the client to the adapter using the

target interface.

Let us examine each of these steps using a specific example.

Step 1: Design the target interface

Imagine an example where there is a pre-existing web client

that we would like to interact with another web service.

However, the service only supports JSON objects, and an

adapter is needed to convert our Object request into a JSON

object.

Design Patterns | 26

Here is the UML diagram for this situation:

First, create the target interface that your adapter class will be

implementing for your client class to use:

public interface WebRequester {

public int request(Object);

}

Step 2: Implement the target interface with the
adapter class

The adapter class provides the methods that will take the client

class’s object and convert it into a JSON object. The adapter

should convert any instance of a class that the client can create

and send that in a request. The adapter class also transfers the

translated request to the adaptee. The client class therefore

only needs to know about the target interface of the adapter.

public class WebAdapter implements WebRequester {

private WebService service;

public void connect(WebService currentService) {

this.service = currentService;

/* Connect to the web service */

}

public int request(Object request) {

Json result = this.toJson(request);

Design Patterns | 27

Json response = service.request(result);

if (response != null)

return 200; // OK status code

return 500; // Server error status code

}

private Json toJson(Object input) { ... }

}

Step 3: Send the request from the client to the
adapter using the target interface

The web client normally returns an object back to the client. In

light of this, the doWork() method should not be modified as it

may disrupt other parts of the system. Instead, the Web Client

should perform this behavior as normal and add in a send

message method, where you can pass in the adapter, the web

service, and any message you want to send.

public class WebClient {

private WebRequester webRequester;

public WebClient(WebRequester webRequester) {

this.webRequester = webRequester;

}

private Object makeObject() { … } // Make an Object

public void doWork() {

Object object = makeObject();

int status = webRequester.request(object);

if (status == 200) {

System.out.println("OK");

} else {

System.out.println("Not OK");

}

return;

}

}

Design Patterns | 28

In the main program, the Web Adapter, the Web Service, and

the Web Client need to be instantiated. The Web Client deals

with the adapter through the Web Requester interface to send

a request. The Web Client should not need to know anything

about the Web Service, such as its need for JSON objects. The

adaptee is hidden from the client by the wrapping adapter

class.

public class Program {

public static void main(String args[]) {

String webHost = "Host: https://google.com\n\r";

WebService service = new WebService(webHost);

WebAdapter adapter = new WebAdapter();

adapter.connect(service);

WebClient client = new WebClient(adapter);

client.doWork();

}

}

Although it might be tempting to think that a solution is to

simply change an interface so that it is compatible with another

one, this is not always feasible, especially if the other interface

is from a third-party library or external system. Changing your

system to match the other system is not always a solution

either, because an update by the vendors to the outside

systems may break part of our system.

An adapter is an effective solution. In summary, an adapter is

meant to:

● Wrap the adaptee and exposes a target interface to the

client.

● Indirectly change the adaptee’s interface into one that

the client is expecting by implementing a target

interface.

● Indirectly translate the client’s request into one that the

adaptee is expecting.

● Reuse an existing adaptee with an incompatible

interface.

Composite Pattern

A composite design pattern is meant to achieve two goals:

Design Patterns | 29

● To compose nested structures of objects

● To deal with the classes for these objects uniformly

It is a structural design pattern. The following basic design is

used by composite design patterns:

In this design, a component interface serves as the supertype

for a set of classes. Using polymorphism, all implementing

classes conform to the same interface, which allows them to be

dealt with uniformly.

Instructor’s Note: An abstract superclass can also be used in
place of an interface, as both allow for
polymorphism. However, this lesson will focus on
interfaces.

A composite class is present as well. This class is used to

aggregate any class that implements the component interface.

The composite class allows you to “traverse through” and

“potentially manipulate” the component objects that the

composite object contains.

A leaf class represents a non-composite type. It is not

composed of other components.

The leaf class and the composite class implement the

Component interface, unifying them with a single type. This

allows us to deal with non-composite and composite objects

uniformly – the Leaf class and the Composite class are now

considered subtypes of Component.

Design Patterns | 30

You may have other composite or leaf classes in practice, but

there will only be one overall component interface or abstract

superclass.

Another important concept to note is that a composite object

can contain other composite objects since the composite class

is a subtype of the component. This is known as recursive

composition. This term is also a synonym for composite

design patterns.

This design pattern has a composite class with a cyclical

nature, which may make it difficult to visualize. Instead, it is

easier to think of composite design patterns as trees:

The main composite object, which is made up of other

component objects, is at the root level of the tree. At each

level, more components can be added below each composite

object, like another composite or a leaf. Leaf objects cannot

have components added to them. Composites, therefore, have

the ability to “grow” a tree, while a leaf ends the tree where it

is.

At the beginning of this lesson, we mentioned two issues that

composite design patterns are meant to address. This tree

helps us understand how those goals are met. Individual types

of objects, in particular, composite class objects, can aggregate

component classes, which create a tree-like structure. As well,

each individual class is a subtype of an interface or superclass

that will be able to conform to a set of shared behaviors.

Let us examine the implementation of a composite design

pattern by using an example with a building composed of

generic housing structures.

Design Patterns | 31

Below is a UML diagram of this example:

Expressing this in Java can be broken down into steps.

1. Design the interface that defines the overall type.

2. Implement the composite class.

3. Implement the leaf class

Step 1: Design the interface that defines the
overall type

Begin by defining the interface that the composite and leaf

classes will implement. This supports polymorphism for your

component and leaf classes.

public interface IStructure {

public void enter();

public void exit();

public void location();

public String getName();

}

Step 2: Implement the composite class

Design Patterns | 32

Implement the interface in the composite class. This will give

the Housing class its own behavior when the client code uses

it.

As a Housing object can be composed of other structures, you

will need to represent this containment with a suitable

collection, and you will need a method for adding more

components to your composite object. In the code below, we

have a private ArrayList, which can be changed through the

public addStructure method. This allows you to traverse

through the components of a composite object, as you can

retrieve the components when asked. Note that additional

methods can also be included to help with the management of

component objects. It is up to you to decide what else to

include in your composite class.

public class Housing implements IStructure {

private ArrayList < IStructure > structures;

private String address;

public Housing(String address) {

this.structures = new ArrayList < IStructure > ();

this.address = address;

}

public String getName() {

return this.address;

}

public int addStructure(IStructure component) {

this.structures.add(component);

return this.structures.size() - 1;

}

public IStructure getStructure(int componentNumber) {

return this.structures.get(componentNumber);

}

public void location() {

System.out.println("You are currently in " +

this.getName() + ". It has ");

for (IStructure struct: this.structures)

System.out.println(struct.getName());

Design Patterns | 33

}

public void enter() {

System.out.println("You have entered the " +

this.getName());

}

public void exit() {

System.out.println("You have left the " +

this.getName());

}

}

Step 3: Implement the leaf class

The final step is to implement the leaf class. The leaf class does

not contain any components and does not need to have a

collection of components added to it, or any methods to

manage such a collection. Instead, the methods of IStructure

interface simply need to be implemented.

public abstract class Room implements IStructure {

public String name;

public Room(String name) {

this.name = name;

}

public void enter() {

System.out.println("You have entered the " +

this.getName());

}

public void exit() {

System.out.println("You have left the " +

this.getName());

}

public void location() {

System.out.println("You are currently in the" +

this.getName());

}

public String getName() {

return this.name;

Design Patterns | 34

}

}

In order to implement the building with the composite design

pattern, we construct our building structure by structure.

In this example, the building has one floor with a common

room and two washrooms. See the code below.

public class Main {

public static void main(String[] args) {

Housing building = new Housing("123 Street");

Housing floor1 = new Housing("123 Street - First

Floor");

int firstFloor = building.addStructure(floor1);

Room washroom1m = new Room("1F Men's Washroom");

Room washroom1w = new Room("1F Women's Washroom");

Room common1 = new Room("1F Common Area");

int firstMens = floor1.addStructure(washroom1m);

int firstWomans = floor1.addStructure(washroom1w);

int firstCommon = floor1.addStructure(common1);

building.enter();

Housing currentFloor = (Housing)

building.getStructure(firstFloor);

currentFloor.enter(); // Walk into the first floor

Room currentRoom = (Room)

currentFloor.getStructure(firstMens);

currentRoom.enter(); // Walk into the men's room

currentRoom = (Room)

currentFloor.getStructure(firstCommon);

currentRoom.enter(); // Walk into the common area

building.exit();

}

}

Composite objects can be built quickly and easily. Each

component can be expected to have the same set of behaviors

without needing to do any type checking.

Design Patterns | 35

In summary, a composite design pattern allows you to build a

tree-like structure of objects and to treat individual types of

those objects uniformly. This is achieved by:

● Enforcing polymorphism across each class through

implementing an interface (or inheriting from a

superclass).

● Using a technique called recursive composition that

allows objects to be composed of other objects that are

of a common type.

Composite design patterns apply the design principles of

decomposition and generalization. They break a whole into

parts but the whole and parts both conform to a common type.

Complex structures can be built using composite objects and

leaf objects that belong to a unified component type. This

makes it easier to understand and manipulate this structure.

Proxy Pattern

A proxy design pattern allows a proxy class to represent a

real “subject” class. It is a structural design pattern. A proxy is

something that acts as a simplified, or lightweight version, of

the original object. A proxy object can perform the same tasks

as an original object but may delegate requests to the original

object to achieve them.

In this design pattern, the proxy class wraps the real subject

class. This means that a reference to an instance of the real

subject class is hidden in the proxy class. The real object is

usually a part of the software system that contains sensitive

information, or that would be resource-intensive to instantiate.

As the proxy class is a wrapper, client classes interact with it

instead of the real subject class.

The three most common scenarios where proxy classes are

used are:

● To act as a virtual proxy. This is when a proxy class is

used in place of a real subject class that is

resource-intensive to instantiate. This is commonly used

on images in web pages or graphic editors, as a

high-definition image may be extremely large to load.

● To act as a protection proxy. This is when a proxy

class is used to control access to the real subject class.

Design Patterns | 36

For example, a system that is used by both students and

instructors might limit access based on roles.

● To act as a remote proxy. This is when a proxy class is

local, and the real subject class exists remotely. Google

docs make use of this, where web browsers have all the

objects it needs locally, which also exist on a Google

server somewhere else.

The UML diagram below demonstrates the proxy design

pattern.

The proxy class wraps and may delegate, or redirect, calls upon

it to the real subject class. However, not all classes are

delegated, as the proxy class can handle some of its lighter

responsibilities. Only substantive requests are sent to the real

subject class. Because of this, the proxy class must offer the

same methods. Having both these classes implement a

common subject interface allows for polymorphism.

Note that the proxy and real subject classes are subtypes of the

subject. A client class can therefore interact with the proxy,

which will have the same expected interface as the real subject.

Below is an example of a UML diagram for an online retail store

with global distribution and warehousing. In this scenario, you

need to determine which warehouse to send orders to. A

system that routes orders for fulfillment to an appropriate

warehouse will prevent your warehouses from receiving orders

that they cannot fulfill. A proxy may protect your real subject,

the warehouses, from receiving orders if the warehouses do not

have enough stock to fulfill an order.

Design Patterns | 37

The Order Fulfillment class is the proxy in this example. Clients

interact with the system by using the interface.

Implementation of this pattern in Java can be broken down into

steps.

1. Design the subject interface.

2. Implement the real subject class.

3. Implement the proxy class.

4.

Step 1: Design the subject interface

First, create the interface that client software will use to interact

with your system.

public interface IOrder {

public void fulfillOrder(Order);

}

Step 2: Implement the real subject class

Next, implement the real subject class. In this case, the

Warehouse class knows how to process an order for fulfillment,

and it knows how to report the current stock of items. It does

not need to check if it has enough stock to fulfill an order, as

an order should only be sent to a warehouse if it can be

fulfilled.

public class Warehouse implements IOrder {

private Hashtable<String, Integer> stock;

Design Patterns | 38

private String address;

/* Constructors and other attributes would go here */

...

public void fulfillOrder(Order order) {

for (Item item : order.itemList)

this.stock.replace(item.sku, stock.get(item)-1);

/* Process the order for shipment and delivery */

...

}

public int currentInventory(Item item) {

if (stock.containsKey(item.sku))

return stock.get(item.sku).intValue();

return 0;

}

}

Step 3: Implement the proxy class

The final step requires implementing the proxy class. In this

case, the Order Fulfillment class checks warehouse inventory

and ensures that an order can be completed before sending

requests to the warehouse. To do this, it asks each warehouse

if it has enough stock of a particular item. If a warehouse does,

then the item gets added to a new Order object that will be

sent to the Warehouse. The Order Fulfillment class also lets you

separate order validation from order fulfillment by separate

them into two pieces. This improves the overall rate of

processing an order, as the warehouse does not have to worry

about the validation process or about re-routing an order if it

cannot be fulfilled.

The Order Fulfillment class can be improved with other

functionalities, such as prioritizing sending orders to

warehouses based on proximity to the customer.

public class OrderFulfillment implements IOrder {

private List<Warehouse> warehouses;

/* Constructors and other attributes would go here */

Design Patterns | 39

public void fulfillOrder(Order order) {

/* For each item in a customer order, check each

warehouse to see if it is in stock.

If it is then create a new Order for that warehouse.

Else check the next warehouse.

Send all the Orders to the warehouse(s) after you finish

iterating over all the items in the original Order. */

for (Item item: order.itemList) {

for (Warehouse warehouse: warehouses) {

...

}

}

return;

}

}

Key responsibilities of the proxy class there include protecting

the real subject class by checking the client’s request and

controlling access to the real subject class and acting as a

wrapper class for the real subject class.

In summary, a proxy design pattern allows you to defer

creating resource-intensive objects until needed, control access

to specific objects, or when you need something to act as a

local representation of a remote system. They made systems

more secure, and less resource-intensive. The main features of

a proxy design pattern are:

● To use the proxy class to wrap the real subject class.

● To have a polymorphic design so that the client class can

expect the same interface for the proxy and real subject

classes.

● To use a lightweight proxy in place of a

resource-intensive object until it is actually needed.

● To implement some form of intelligent verification of

requests from client code in order to determine if, how,

and to whom the requests should be forwarded to.

● To present a local representation of a system that is not

in the same physical or virtual space.

Design Patterns | 40

Decorator Pattern

It is beneficial for software to have flexible combinations of

overall behaviors. However, changes to classes cannot be made

while a program is running, as the behavior of an object is

defined by its class, and only occurs at compile time. A new

class would need to be created in order to achieve a new

combination of behaviors while a program is running. Lots of

new combinations, however, would lead to lots of classes,

which is undesirable.

A decorator design pattern allows additional behaviors or

responsibilities to be dynamically attached to an object,

through the use of aggregation to combine behaviors at run

time. It is a structural design pattern.

As explained in the first course of this specialization,

aggregation is a design principle used to represent a “has-a” or

“weak containment” relationship between two objects. This can

be used to build a stack of objects, also known as an

“aggregation stack”, where each level of the stack contains an

object that knows about its own behavior and augments the

one underneath it.

In this visual representation, object A is a base object,

because it does not contain another object, and has its own set

of behaviors. Object B aggregates Object A, allowing Object

B to “augment” the behaviors of Object A. Objects can

Design Patterns | 41

continue to be added to the stack. So, in the above diagram,

Object C aggregates to Object B and augments the behaviors

of Object B.

In an aggregation stack, the aggregation relationship is always

one-to-one in the decorator design pattern. This allows the

stack to build up, so one object is on top of another.

An overall combination of behaviors for stacked objects can be

achieved if you call upon the top element, which is Object C in

this example. This would start a series of calls: Object C would

call upon Object B, Object B would call upon Object A.

Object A would then respond with its behaviour, then Object

B would add its increment of behavior, followed by Object C.

This design pattern makes use of interfaces and inheritance so

that the classes conform to a common type whose instances

can be stacked in a compatible way. This builds a coherent

combination of behavior overall.

Below is a UML diagram for a decorator design pattern.

It consists of a Component interface that defines the common

type for all the classes. A client class expects the same

interface across all the component classes. A concrete

component class implements the component interface and can

be instantiated. An instance of this class can be used as a base

object in the stack.

Design Patterns | 42

As indicated by the italics, Decorator is an abstract class.

Similar to the concrete component class, it implements the

component interface. However, the Decorator class aggregates

other types of components, which will allow us to “stack”

components on top of each other. It also serves as the abstract

superclass of concrete decorator classes that will each provide

an increment of behavior.

A stack of components can be built starting with an instance of

the concrete component class and continuing with instances of

subclasses of the decorator abstract class.

Decorator design patterns allow objects to dynamically add

behaviors to others, and it reduces the number of classes

needed to offer a combination of behaviors.

Let us examine the decorator design pattern using an example

of a web page. A web page might display complex behavior,

such as only allowing access to authorized users, or splitting

search results across multiple pages. Every possible

combination of web page permission, pagination, or caching

behaviors does not need to be written as different web page

types. Decorator design patterns can be used to create one

class for each type of behavior as well as build specific

combinations for a web page that you want at run time.

When expressed as a UML diagram, the example outlined above

looks as below:

Note that for simplicity, the BasicWebPage’s HTML,

stylesheet, and scripts are represented as Strings. As well, any

Design Patterns | 43

number of additional behaviors can be used to augment the

basic web page, but this example is limited to the behaviors of

adding user authorization and authentication to make sure the

user is who they claim to be.

Implementation of this design pattern with Java can be broken

down into steps.

1. Design the component interface.

2. Implement the interface with your base concrete

component class.

3. Implement the interface with your abstract decorator

class.

4. Inherit from the abstract decorator and implement the

component interface with concrete decorator classes.

Step 1: Design the component interface

First, define the interface that the rest of the classes in the

design pattern will be subtypes of. This interface will define the

common behaviors that your basic web page and decorators

will have.

public interface WebPage {

public void display();

}

Step 2: Implement the interface with your base
concrete component class

Next, implement the base concrete component class with the

interface. The concrete component class will be the base

building block for all web pages objects during run time.

The concrete component class will implement how it displays

itself by using standard HTML markup and page element styling

defined in the cascading style sheet. This example web page

will also run some basic JavaScript.

public class BasicWebPage implements WebPage {

public String html = ...;

public String styleSheet = ...;

public String script = ...;

Design Patterns | 44

public void display() {

/* Renders the HTML to the stylesheet, and run any embedded

scripts */

}

Step 3: Implement the interface with your abstract
decorator class

Next, the abstract decorator class should be implemented with

the interface. This implementation is important.

public abstract class WebPageDecorator implements WebPage {

protected WebPage page;

public WebPageDecorator(WebPage webpage) {

this.page = webpage;

}

public void display() {

this.page.display();

}

}

The web page decorator only has one instance of the web page.

This allows decorators to be stacked on top of the basic web

page, and on top of each other. Each type of web page is

responsible for its own behavior and will recursively invoke the

next web page on the stack to execute its behavior.

The constructor allows different subtypes of web pages to be

linked together in a stack. All that must be done is to indicate

what instance of web page subtype should be stacked upon.

In stacking, the order in which you build the stack matters.

However, the basic web page must be the first one in the stack.

The rest of the ordering will depend on the design of your

system and which augmenting behaviors you want to be

executed first.

The abstract decorator simply delegates the display behavior to

the web page object that it aggregates. This allows you to

combine the display behavior down the stack of web pages.

Design Patterns | 45

Step 4: Inherit from the abstract decorator and
implement the component interface with
concrete decorator classes

The final step is to inherit from the abstract decorator and

implement the component interface with the concrete decorator

classes.

public class AuthorizedWebPage extends WebPageDecorator {

public AuthorizedWebPage(WebPage decoratedPage) {

super(decoratedPage); }

public void authorizedUser() {

System.out.println("Authorizing user");

}

public display() {

super.display();

this.authorizedUser();

}

}

public class AuthenticatedWebPage extends WebPageDecorator {

public AuthenticatedWebPage(WebPage decoratedPage) {

super(decoratedPage); }

public void authenticateUser() {

System.out.println("Authenticating user");

}

public display() {

super.display();

this.authenticateUser();

}

}

In this example, the constructors use the abstract superclass’s

constructor, as it allows decorators to be stacked together. The

abstract web page decorator class handles the aggregation of

the concrete decorator classes. Further, each decorator has its

Design Patterns | 46

own responsibilities. These are implemented within the

appropriate classes so that they can be invoked.

Notice that to recursively call the display behavior, the concrete

decorators invoke the superclass’s display method. Since the

abstract decorator superclass facilitates the aggregation of

various types of web design, the call to super.display() will

cause the next web page in the stack to execute its version of

the display until you get to the basic web page. The recursive

call will end here because the basic web page is the concrete

component, which does not aggregate any other types of web

pages. This links the calls of display all the way to the bottom

and bubbles the execution back up. The basic web page must

be built before behaviors can be added to it.

Let us now examine the decorator pattern in action.

public class Program {

public static void main(String args[]) {

WebPage myPage = new BasicWebPage();

myPage = new AuthorizedWebPage(myPage);

myPage = new AuthenticatedWebPage(myPage);

myPage.display();

}

}

As explained above, the basic web page is built first. The

authorization behavior is added next. The web page is

completed by adding the authentication behavior last.

When the display method is called, it will link the method calls

down to the basic web page. The basic web page will display

itself and then the display call will move back up the links to

the authorized behavior first and the authentication behavior

last. As an aggregation stack diagram, this would look as

follows:

Design Patterns | 47

Any decorator could be added to the basic web page to create a

different combined behavior. The basic web page’s behavior

can be dynamically built up in this way.

In summary, the main features of a decorate design pattern are:

● We can add, in effect, any number of behaviors

dynamically to an object at runtime by using aggregation

as a substitute for pure inheritance

● Polymorphism is achieved by implementing a single

interface.

● Aggregation lets us create a stack of objects.

● Each decorator object in the stack is aggregated in a

one-to-one relationship with the object below it in the

stack.

● By combining aggregation and polymorphism, we can

recursively invoke the same behavior down the stack and

have the behavior execute upwards from the concrete

component object.

The use of design patterns like the decorator pattern helps you

to create complex software, without the complex overhead.

Design Patterns | 48

Module 2: Behavioural Design Pattern

Design Patterns | 49

This module will describe certain behavioral design

patterns. These are patterns that focus on ways that individual

objects collaborate to achieve a common goal. This is an

important aspect to consider in software design – objects are

only pieces of a larger solution. For each to work effectively, it

must have a set purpose. Let us examine some behavioral

design patterns.

Template Method Pattern

The template method pattern defines an algorithm’s steps

generally, by deferring the implementation of some steps to

subclasses. In other words, it is concerned with the assignment

of responsibilities.

The template method is best used when you can generalize

between two classes into a new superclass. Think of it as

another technique to use when you notice you have two

separate classes with very similar functionality and order of

operations. You can choose to use a template method, so

changes to these algorithms only need to be applied in one

place instead of two. The template method would be within the

superclass, and would therefore be inherited by the subclasses.

Differences in algorithms would be done through calls to

abstract methods whose implementations are provided by the

subclass. After using generalization, objects can be more

effectively reused. Inheritance allows functionality to be shared

between classes and enables clearer and more self-explanatory

code.

Let us examine a UML diagram for an example of a template

method pattern. In this example, imagine you are an executive

chef who oversees a large chain of restaurants that serves

pasta. In order to ensure that dishes at all the restaurant

locations are consistent, instructions are provided for making

popular dishes. The two most popular dishes are spaghetti with

tomato sauce and meatballs, and penne noodles with alfredo

sauce and chicken.

Both dishes require that you boil water, cook the pasta, add the

sauce, add the protein, and garnish the plate. Some of these

steps have different implementations depending on which dish

is being prepared – each dish has a different sauce, protein,

and garnish. Other steps, however, would be the same, such as

boiling the water.

Design Patterns | 50

This situation could be modeled with a PastaDish class that

has a method that makes the recipe for each subclass,

spaghetti with meatballs or penne alfredo. The method knows

the general set of steps to make either dish - from boiling

water to adding the garnish. Steps that are special to a dish,

like the sauce to add, are implemented in the subclass. The

UML diagram below illustrates this example.

The UML for the template method pattern is centered upon the

relationship between the superclass and its subclasses. The

superclass must contain abstract methods that are

implemented by the subclasses.

Let us now examine how this might be implemented as Java

code.

First, let us examine a look at the code for the PastaDish

superclass.

public abstract class PastaDish {

final void makeRecipe() {

boilWater();

Design Patterns | 51

addPasta();

cookPasta();

drainAndPlate();

addSauce();

addProtein();

addGarnish();

}

abstract void addPasta();

abstract void addSauce();

abstract void addProtein();

abstract void addGarnish();

private void boilWater() {

System.out.println("Boiling water");

}

...

}

The PastaDish is an abstract class – a generic pasta dish

cannot be made. The makeRecipe() method is our template

method. This method is marked as final; in Java, this keyword

means that the method declared cannot be overridden by

subclasses. In this example, it means that neither specific dish

subclass can have its own version of makeRecipe, and ensures

consistency in the steps of making the dishes while also

reducing redundant code.

From within the makeRecipe, the other methods are called.

Methods that are the same for any subclass are consolidated in

the superclass. Specialized methods, however, are left up to

subclasses to provide them.

Let us now examine the SpaghettiMeatballs and

PenneAlfredo subclasses. Both subclasses extend the

PastaDish class and implement the abstract methods

addPasta, addProtein, addSauce, and addGarnish. These

methods are called in the makeRecipe template method found

in the PastaDish superclass. The template method is inherited

in a subclass and behaves as expected to make a dish with the

right ingredients.

Design Patterns | 52

public class SpaghettiMeatballs extends PastaDish {

public void addPasta() {

System.out.println("Add spaghetti");

}

public void addProtein() {

System.out.println("Add meatballs");

}

public void addSauce() {

System.out.println("Add tomato sauce");

}

public void addGarnish() {

System.out.println("Add Parmesan cheese");

}

}

public class PenneAlfredo extends PastaDish {

public void addPasta() {

System.out.println("Add penne");

}

public void addProtein() {

System.out.println("Add chicken");

}

public void addSauce() {

System.out.println("Add Alfredo sauce");

}

public void addGarnish() {

System.out.println("Add parsley");

}

}

Chain of Responsibility Pattern

The chain of responsibility design pattern is a chain of

objects that are responsible for handling requests. In software

design, these objects are handler objects that are linked

together.

When a client object sends a request, the first handler in the

chain will try to process it. If the handler can process the

request, then the request ends with this handler. However, if

the handler cannot handle the request, then the request is sent

Design Patterns | 53

to the next handler in the chain. This process will continue until

a handler can process the request.

If the entire chain is unable to handle the request, then the

request is not satisfied.

The chain of responsibility is an important pattern in software.

This pattern avoids coupling the sender to the receiver by

giving more than one object a chance to handle the request.

Whoever sends the request does not need to to worry about

who will handle the request, so the sender and the receiver are

decoupled from each other. The chain of responsibility also

helps deal with situations in which streams of different

requests need to be handled.

A good real-life metaphor for a chain of responsibility pattern

might be considering fixing a chair. Imagine you come across a

screw, and you need a tool to tighten it. If you are not sure

which type of tool to use, you might try each tool and try it one

at a time on the screw until you could determine which one of

them works.

DID YOU KNOW?

This pattern is similar to exception handling in Java. In exception

handling, a series of try/catch blocks are written in your software to

ensure that exceptions are dealt with properly. When an exception

occurs, one of the catch blocks is expected to handle it.

Design Patterns | 54

The chain of responsibility can be used for many different

purposes. For example, it is commonly used for filtering

objects, such as putting certain emails into a spam folder.

The UML diagram for the chain of responsibility typically looks

as below. Objects on the chain are handlers that implement a

common method handleRequest(), which is declared in the

abstract superclass Handler, as indicated by the italics. Handle

objects are connected from one to the next in the chain.

Subclasses of Handler handle requests in their own way.

Design Patterns | 55

The chain of responsibility pattern does not come without

potential issues. For example, what if there’s a mistake in the

second filter and its rule doesn’t match but forgets to pass the

request on to the next filter. In this case, the handling ends

prematurely. To circumvent this problem, there needs to be an

algorithm that ensures each filter class handles requests in a

similar fashion.

Each filter needs to go through the following steps:

1. Check if the rule matches.

2. If it matches, do something specific.

3. If it doesn’t match, call the next filter in the list.

It may be helpful to use the template pattern learned in a

previous lesson to ensure that each class will handle a request

in a similar way, following the above steps.

Design Patterns | 56

State Pattern

Objects in your code are aware of their current state. They can

choose an appropriate behavior based on their current state.

When their current state changes, this behavior can be altered -

this is the state design pattern.

This pattern should be primarily used when you need to change

the behavior of an object based upon changes to its internal

state or the state it is in at run-time. This pattern can also be

used to simplify methods with long conditionals that depend

on the object’s state.

The general structure of a state pattern can be represented as

below in a UML diagram:

The state design pattern might be best explained through an

example. A vending machine has several states, and specific

actions based on those states. For example, imagine you want

to purchase a chocolate bar from a vending machine that costs

one dollar.

If you insert the dollar into the machine, several things might

happen. You could make your selection, the machine would

dispense a chocolate bar, and you would collect the bar and

leave. You could decide you no longer want the chocolate bar,

press the eject money button, and the machine would return

the dollar. You could make your selection, the machine could

be out of chocolate bars, and could notify you of this.

Design Patterns | 57

There are three different states that the vending machine can

be in within this scenario. Before being approached, the

machine is in an idle state. When the dollar is inserted, the

state of the machine changes and could either dispense a

product or return the money upon receiving an eject money

request. The third state the machine could be in is if the

machine is out of stock.

Each of these states could be represented as state objects in

the code. However, in this scenario, state objects are passive

and don’t have much responsibility themselves. Using the state

design pattern rather than a state diagram, this can be

represented in a different way.

Below is the UML state diagram:

But, applying the state design pattern as a UML diagram

presented at the beginning of this lesson, the following

diagram can be generated:

Design Patterns | 58

Let us examine the state interface as code. State classes must

implement the methods in this interface to respond to each

trigger.

public interface State {

public void insertDollar(VendingMachine vendingMachine

);

public void ejectMoney(VendingMachine vendingMachine);

public void dispense(VendingMachine vendingMachine);

}

Now, let us examine the Idle State class:

public class IdleState implements State {

public void insertDollar(VendingMachine vendingMachine) {

System.out.println("dollar inserted");

vendingMachine.setState(

vendingMachine.getHasOneDollarState()

);

}

public void ejectMoney(VendingMachine vendingMachine) {

System.out.println("no money to return");

Design Patterns | 59

}

public void dispense(VendingMachine vendingMachine) {

System.out.println("payment required");

}

}

The IdleState class now implements the State interface. When

a dollar is inserted, the insertDollar() method is called, which

then calls a setState() method upon the vendingMachine

object. This changes the current state of the machine to the

HasOneDollar state.

public class HasOneDollarState implements State {

public void insertDollar(VendingMachine vendingMachine) {

System.out.println("already have one dollar");

}

public void ejectMoney(VendingMachine vendingMachine) {

System.out.println("returning money");

vendingMachine.doReturnMoney();

vendingMachine.setState(

vendingMachine.getIdleState()

);

}

// class HasOneDollarState continued below
...

In the HasOneDollarState class, when the ejectMoney

method is called, the money is returned and setState() is

called on the vending machine to change the state to the Idle

state.

...

// class HasOneDollarState continued

public void dispense(VendingMachine vendingMachine) {

System.out.println("releasing product");

Design Patterns | 60

if (vendingMachine.getCount() > 1) {

vendingMachine.doReleaseProduct();

vendingMachine.setState(

vendingMachine.getIdleState());

} else {

vendingMachine.doReleaseProduct();

vendingMachine.setState(

vendingMachine.getOutOfStockState());

}

}

}

If the dispense method is called in the HasOneDollarState

class, then the product is released. If the stock remains after

this, the vending machine’s state sets to either the Idle state or

the OutOfStock state.

public class PopMachine {

private State idleState;

private State hasOneDollarState;

private State outOfStockState;

private State currentState;

private int count;

public PopMachine(int count) {

// make the needed states

idleState = new IdleState();

hasOneDollarState = new HasOneDollarState();

outOfStockState = new OutOfStockState();

if (count > 0) {

currentState = idleState;

this.count = count;

} else {

currentState = outOfStockState;

this.count = 0;

}

}

Design Patterns | 61

The VendingMachine class constructor will instantiate each of

the state classes, and the current state will refer to one of these

state objects.

public void insertDollar() {

currentState.insertDollar(this);

}

public void ejectMoney() {

currentState.ejectMoney(this);

}

public void dispense() {

currentState.dispense(this);

}

The VendingMachine class would have methods to handle the

triggers, but it delegates the handling to whatever is the

current state object.

Using the State design pattern, long conditionals are not

necessary for the methods and creates much cleaner code.

Command Pattern

The command pattern encapsulates a request as an object of

its own. In general, when an object makes a request for a

second object to do an action, the first object would call a

method of the second object and the second object would

complete the task. There is direct communication between the

sender and receiver object.

The command pattern creates a command object between the

sender and receiver. This way, the sender does not have to

know about the receiver and the methods to call.

Design Patterns | 62

In a command pattern, a sender object can create a command

object. However, an invoker is required to make the command

object do what it’s supposed to do and get the specific receiver

object to complete the task. An invoker is therefore an object

that invokes the command objects to complete whatever task it

is supposed to do. A command manager can also be used that

basically keeps track of the commands, manipulates them, and

invokes them.

Purposes of the Command Pattern

There are many different purposes for using the command

pattern.

One is to store and schedule different requests. If requests are

turned into command objects in your software, then they can

be stored into lists and manipulated before they are completed.

They can also be placed onto a queue so that different

commands can be scheduled to be completed at different

times. For example, the command pattern can be used to have

an alarm ring in calendar software. A command object could be

created to ring the alarm, and this command could be placed

into a queue so that it is completed when the event is

scheduled to occur.

Another purpose for the command pattern is to allow

commands to be undone or redone. For example, edits can be

undone or redone in a document. Imagine that the software has

two lists: a history list, which holds all the commands that have

been executed, and a redo list, which will be used to put

commands that have been undone. Each time a command is

requested, a command object is created and executed. When

the command is completed, it goes to the history list. If you

undo a command, then the software would go to the history list

and ask the most recent command executed to undo itself, and

put it on the redo list. Alternately, if a user needs to redo, the

software would take the most recent command undone in the

redo list, and move it onto the history list again. The redo list

will be emptied every time a command is executed because

usually, you can’t redo a previous edit after a new edit has been

made.

Design Patterns | 63

The command pattern lets you do things to requests that you

wouldn’t be able to do if they were simple method calls from

one object to the other. Commands can also be stored in a log

list, so if the software crashes unexpectedly, users can redo all

the recent commands.

Below is a UML diagram of the basic structure of a command

pattern:

In this diagram, there is a command superclass, and all

commands are instances of subclasses of this command

superclass. The superclass defines the common behaviors of

your commands. Each command will have the methods

execute(), unexecute(), and isReversible().

● The execute() method will do the work the command is

supposed to do.

● The unexecute() method will do the work of undoing

the command.

● The isReversible() method will determine if the

command is reversible, returning true if the command

can be undone.

Some commands may not be able to be undone, such as a save

command.

The concrete command classes call on specific receiver classes

to deal with the work of completing the command.

Design Patterns | 64

Let us examine how a command object should be written in

Java code, with the example of “pasting text”.

public class PasteCommand extends Command {

private Document document;

private int position;

private String text;

...

public PasteCommand(Document document,

int position, String text){

this.document = document;

this.position = position;

this.text = =text;

}

public void execute() {

document.insertText (position, text);

}

public void unexecute() {

document.deleteText (position, text.length());

}

public boolean isReversible() {

return true;

}

}

The paste command extends the Command superclass and

keeps track of where the text will be inserted as well as what

will be inserted. Command objects must be able to keep track

of a lot of details on the current state of the document in order

for commands to be reversible.

When the execute() and unexecute() methods are called, this

is where the command object actually calls on the receiver to

complete the work.

Let us examine the code for the invoker.

CommandManager commandManager = CommandManager.getInstance();

Command command = new PasteCommand(aDocument, aPosition,

AText);

commandManager.invokeCommand (command);

The invoker references the command manager, which is the

object that manages the history and redo lists. Then, the

Design Patterns | 65

invoker creates the command object with the information

needed to complete the command. Finally, it calls the command

manager to execute the command.

Benefits of the Command Pattern

The command pattern allows commands to be manipulated as

objects. Functionalities can be added to the command objects,

such as putting them into queues and adding undo/redo

functions.

Command patterns also decouple the objects of your software

program, as classes do not need to know about other objects in

the software system – the command object deals with the work

by invoking receiver objects, and the original object does not

need to know what other objects are involved in the request.

The command pattern also allows logic to be pulled from user

interfaces. User interface classes should only be dealing with

issues like getting information to and from the user, and

application logic should not be in user interface classes. The

command pattern creates a layer where command objects go,

so that every time a button is clicked on the interface, a

command object is created. This is where application logic will

sit instead. The command objects are independent of the user

interface so that adding changes like new buttons to the

interface is easier and faster.

Each and every service in a system can be an object of its own,

allowing for more flexible functionality. This pattern can be a

great asset to making versatile and easy-to-maintain software

programs.

Observer Pattern

The observer design pattern is a pattern where a subject

keeps a list of observers. Observers rely on the subject to

inform them of changes to the state of the subject.

In an observer design pattern, there is generally a Subject

superclass, which would have an attribute to keep track of all

the observers. There is also an Observer interface with a

method so that an observer can be notified of state changes to

the subject. The Subject superclass may also have subclasses

that implement the Observer interface. These elements create

the relationship between the subject and observer.

Design Patterns | 66

Let us explore this pattern through an example. Imagine you

have subscribed to a blog and would like to receive

notifications of any changes made to the blog.

The sequence diagram for this example might look as below:

A sequence diagram for observe patterns will have two major

roles: the subject (the blog) and the observer (a subscriber). In

order to form the subject and observer relationship, a

subscriber must subscribe to the blog. The blog then needs to

be able to notify subscribers of a change. The notify function

keeps subscribers consistent and is only called when a change

has been made to the blog. If a change is made, the blog will

make an update call to update subscribers. Subscribers can get

the state of the blog through a getState() call. It is up to the

blog to ensure its subscribers get the latest information.

To unsubscribe from the blog, subscribers could use the last

call in the sequence diagram: unsubscribe() originates from

the subscriber and lets the blog know the subscriber would like

to be removed from the list of observers.

Let us now examine this example as a UML diagram:

Design Patterns | 67

The Subject superclass has three methods: register observer,

unregister observer, and notify. These are essential for a

subject to relate to its observers. A subject may have zero or

more observers registered at any given time. The Blog subclass

would inherit these methods.

The Observer interface only has the update method. An

observer must have some way to update itself. The Subscriber

class implements the Observer interface, providing the body of

an update method, so a subscriber can get what changed in the

blog.

Let us now examine this example as Java code.

public class Subject {

private ArrayList<Observer> observers = new

ArrayList<Observer>();

public void registerObserver(Observer observer) {

observers.add(observer);

}

public void unregisterObserver(Observer observer) {

observers.remove(observer);

}

Design Patterns | 68

public void notify() {

for (Observer o : observers) {

o.update();

}

}

}

In the Subject superclass, the registerOberserver() method

adds an observer to the list of observers. The

unregisterObserver() method removes an observer from the

list. The notify method calls update upon each observer on the

list.

The Blog class is a subclass of Subject, which will inherit the

registerObserver(), unregisterObserver(), and notify()

methods. Also, the Blog class has the other responsibilities of

managing a blog and posting methods.

The Observer interface would be as below:

public interface Observer {

public void update();

}

The Observer interface makes sure all observer objects

behave the same way. There is only a single method to

implement, update(), which is called by the subject. The

subject makes sure when a change happens, all its observers

are notified to update themselves. In this example, there is a

class Subscriber that implements the Observer interface.

class Subscriber implements Observer {

public void update() {

// get the blog change

...

}

}

This update method is called when the blog notifies the

subscriber of a change.

Observer design patterns save time when implementing a

system. If many objects rely on the state of one, the observer

design pattern has even more value. Instead of managing all

Design Patterns | 69

observer objects individually, the subject manages them and

ensures observers are updating themselves as needed.

This behavior pattern is typically used to make it easy to

distribute and handle notifications of changes across systems

in a manageable and controlled way.

Design Patterns | 70

Module 3: Working with Design Patterns and
Anti-patterns

Design Patterns | 71

This module will cover the Model-View-Controller (MVC) design

pattern. This pattern builds upon design patterns presented in

the first two modules of this course. This module will also

explore several design principles that underlie design patterns.

These principles help ensure the software is reusable, flexible,

and maintainable. Then, you will learn ways to analyze and

critique your code for bad design, by exploring common

malpractices. These malpractices are commonly referred to as

antipatterns or code smells in the software industry.

MVC Pattern

Model, View, Controller (MVC) pattern is a pattern that

should be considered for use with user interfaces. MVC

patterns divide the responsibilities of a system that offers a

user interface into three parts: model, view, and controller.

Below is a diagram of a simple MVC pattern.

The Model is going to contain the underlying data, state, and

logic that users want to see and manipulate through an

interface. It is the “back end”, or the underlying software. A key

aspect of the MVC pattern is that the model is self-contained. It

has all of the state, methods, and other data needed to exist on

its own. The View gives users the way to see the model in the

way they expect and allows them to interact with it or at least

parts of it. It is the “front end” or the presentation layer of the

software. A model could have several views that present

Design Patterns | 72

different parts of the model, or present the model in different

ways.

When a value changes in the model, the view needs to be

notified, so it can update itself accordingly. The observer

design pattern allows this to happen. In an observer pattern,

observers are notified when the state of the subject changes. In

this case, the view is an observer. When the model changes, it

notifies all of the views that are subscribed to it.

The view may also present users with ways to make changes to

the data in the underlying model. It does not directly send

requests to the model, however. Instead, information about the

user interaction is passed to a Controller. The controller is

responsible for interpreting requests and interacts with

elements in the view, and changing the model. The view is

therefore only responsible for the visual appearance of the

system. The model focuses only on managing the information

for the system.

The MVC pattern uses the separation of concerns design

principle to divide up the main responsibilities in an interactive

system. The controller ensures that the views and the model

are loosely coupled. The model corresponds to entity objects,

which are derived from analyzing the problem space for the

system. The view corresponds to a boundary object, which is

at the edge of your system that deals with users. The controller

corresponds to a control object, which receives events and

coordinates actions.

In order to examine the implementation of this pattern in Java

code, let us consider an example. Imagine you are creating an

interface for a grocery store, where cashiers can enter orders,

which are displayed. Customers and cashiers should be able to

see the list of items entered into the order with a barcode

scanner and see the total bill amount. Cashiers should also be

able to make corrections if necessary.

Model

Let us begin with the model, which is the most essential part of

the pattern. The model should be able to exist independently,

without views or controllers.

In this example, since the view is going to be an observer, the

model needs to be observable. The java.util package can be

used to implement this behavior. This package contains an

Design Patterns | 73

observable class that can be extended. In this example,

Observable can be extended, and the StoreOrder class will

allow you to add your views as observers. This will allow them

to update whenever the order is updated.

import java.util.*;

public class StoreOrder extends Observable {

private ArrayList<String> itemList;

private ArrayList<BigDecimal> priceList;

public StoreOrder() {

itemList = new ArrayList<String>();

priceList = new ArrayList<BigDecimal>();

}

public String getItem(int itemNum) {

return itemList.get(itemNum);

}

public String getPrice(int itemNum) {

return priceList.get(itemNum);

}

public ListIterator<String> getItemList() {

ListIterator<String> itemItr = itemList.listIterator();

return itemItr;

}

public ListIterator<BigDecimal> getPriceList() {

ListIterator<String> priceItr =

priceList.listIterator();

return priceItr;

}

public void deleteItem(int itemNum) {

itemList.remove(itemNum);

priceList.remove(itemNum);

setChanged();

notifyObservers();

}

Design Patterns | 74

public void addItem(int barcode) {

// code to add item (probably used with a scanner)

// prices are looked up from a database

...

setChanged();

notifyObservers();

}

public void changePrice(int itemNum, BigDecimal newPrice)

{

priceList.set(itemNum,newPrice);

setChanged();

notifyObservers();

}

}

This simple example is a class that has several methods that

modify itself. Items can be added, deleted, or have their prices

change. When changes are made, the setChange() method

flags the change, the notify Observers method notifies the

views so that they can update themselves.

Note that the model does not contain any user interface

elements, and it is not aware of any views.

View

Let us now examine one of the views in Java code.

As the OrderView class implements the Observer interface, an

update method must be provided. Notice that the

storeOrder() had to be downcast in order to call the

getItemList() and getPriceList() methods. To make the code

more type-safe, you could alternately develop your own

Observer pattern with Generics.

Design Patterns | 75

The view cannot call the method of the Model, but instead calls

the methods of the Controller. This is what happens when the

view tries to modify the model.

import java.util.*;

import javax.swing.JFrame;

// ..etc.

public class OrderView extends JPanel implements Observer,

ActionListener {

// Controller

private OrderController controller;

// User-Interface Elements

private JFrame frame;

private JButton changePriceButton;

private JButton deleteItemButton;

private JTextField newPriceField;

private JLabel totalLabel;

private JTable groceryList;

private void createUI() {

// Initialize UI elements. e.g.:

deleteItemButton = new JButton("Delete Item");

add(deleteItemButton);

...

// Add listeners. e.g.:

deleteItemButton.addActionListener(this);

...

}

public void update (Observable s, Object arg) {

display(((StoreOrder) s).getItemList(), ((StoreOrder)

s).getPriceList());

}

Design Patterns | 76

public OrderView(OrderController controller) {

this.controller = controller;

createUI();

}

public void display (ArrayList itemList, ArrayList

priceList) {

// code to display order

...

}

public void actionPerformed(ActionEvent event) {

if (event.getSource() == deleteItemButton) {

controller.deleteItem(groceryList.getSelectedRow());

}

else if (event.getSource() == changePriceButton) {

BigDecimal newPrice = new

BigDecimal(newPriceField.getText());

controller.changePrice(groceryList.getSelectedRow(),

newPrice);

}

}

}

Controller

Let us now examine the controller as Java code.

This example is very simple but still demonstrates that the

controller must have references to both the view and model

that it connects. Notice also that the controller does not make

changes to the state of the model directly. Instead, it calls

methods of the model to make changes.

public class OrderController {

private StoreOrder storeOrder;

private OrderView orderView;

Design Patterns | 77

public OrderController(StoreOrder storeOrder, OrderView

orderView) {

this.storeOrder = storeOrder;

this.orderView = orderView;

}

public void deleteItem(int itemNum) {

storeOrder.deleteItem(itemNum);

}

public void changePrice(int itemNum, BigDecimal newPrice) {

storeOrder.changePrice(itemNum, newPrice);

}

}

Controllers make the code better in the following ways:

● The view can focus on its main purpose: presenting the

user interface, as the controller takes the responsibility

of interpreting the input from the user and working with

the model based on that input.

● The view and the model are not “tightly coupled” when a

controller is between them. Features can be added to the

model and tested long before they are added to the

view.

Controllers make the code cleaner and easier to modify. Note

that in most software systems, there are generally multiple

models, view, and controller classes.

MVC patterns may be used in many ways. The defining feature

of the MVC pattern is the separation of concerns between the

back-end, the front-end, and the coordination between the two.

Design Patterns | 78

Design Principles Underlying Design Patterns

All design patterns follow a basic set of design principles. This

next lesson will examine some of these underlying design

principles. These principles address issues such as flexibility

and reusability.

Open/Closed Principle

The open/closed principle states that classes should be open

for extension but closed to change.

A class is considered “closed” to editing once it has:

● Been tested to be functioning properly. The class should

behave as expected.

● All the attributes and behaviors are encapsulated,

● Been proven to be stable within your system. The class

or any instance of the class should not stop your system

from running or do it harm.

Although the principle is called “closed”, it does not mean that

changes cannot be made to a class during development. Things

should change during the design and analysis phase of your

development cycle. A “closed” class occurs when a point has

been reached in development when most of the design

decisions have been finalized and once you have implemented

most of your system.

During the lifecycle of your software, certain classes should be

closed to further changes to avoid introducing undesirable side

effects. A “closed” class should still be fixed if any bugs or

unexpected behaviors occur.

If a system needs to be extended or have more features added,

then the “open” side of the principle comes into play. An “open”

class is one that can still be built upon. There are two different

ways to extend a system with the open principle.

The first way is through the inheritance of a superclass.

Inheritance can be used to simply extend a class that is

considered closed when you want to add more attributes and

behaviors. The subclasses will have the original functions of the

superclass, but extra features can be added in the subclasses.

This helps preserve the integrity of the superclass, so if the

extra features of the subclasses are not needed, the original

Design Patterns | 79

class can still be used. Note that subclasses can also be

extended, so this allows the open/closed principle to

continually extend your system as much as desired.

If you want to limit a class so that it is no longer extendable, it

can be declared as “final” to prevent further inheritance. This

keyword can also be used for methods.

The second way a class can be open is when the class is

abstract and enforces the open/closed principle through

polymorphism. An abstract class can declare abstract methods

with just the method signatures. Each concrete subclass must

provide its own implementation of these methods. The

methods in the abstract superclass are preserved, and the

system can be extended by providing different

implementations for each method. This is useful for behaviors

like sorting or searching.

Design Patterns | 80

An interface can also enable polymorphism, but remember that

it will not be able to define a common set of attributes.

The open/closed principle is used to keep stable parts of a

system separate from varying parts. It allows the addition of

new features to a system, but without the expense of

disrupting working parts. Extension, unlike change, allows

varying parts to be worked upon while avoiding unwanted side

effects in the stable parts. Varying parts should be kept

isolated from one another, as these extensions will eventually

become stable, and there is no guarantee they will all be

finished at the same time, as some features may be more

complex, larger, or more ambitious than others.

All design patterns use the open/closed principle in some way.

They all follow the idea that some part of your system should

be able to extend and be built upon through some means like

inheritance or implementing an interface. It may not always be

possible to practice this principle, but it is something to strive

towards.

The open/closed principle:

● Helps keep a system stable by “closing” classes to

change.

● Allows a system to open for extension through

inheritance or interfaces.

Dependency Inversion Principle

Software dependency, or coupling, is a common problem that

needs to be addressed in system design. Coupling defines how

much reliance there is between different components of your

software. High coupling indicates a high degree of reliance.

Low coupling indicates low dependency. Dependency

determines how easily changes can be made to a system.

Instructor’s Note: For a review on coupling, check out the
lesson on Cohesion and Coupling in the first
course of this specialization!

Design Patterns | 81

If parts of a system are dependent on each other, then

substitute a class or resource for another is not easily done, or

even impossible.

The dependency inversion principle addresses dependency,

to help make systems more robust and flexible. The principle

states that high-level modules should depend on high-level

generalizations, and not on low-level details. This keeps client

classes independent of low-level functionality.

This suggests that client classes should depend on an interface

or abstract class, rather than a concrete resource. Further,

concrete resources should have their behaviors generalized into

an interface or abstract class. Interfaces and abstract classes

are high-level resources. They define a general set of behaviors.

Concrete classes are low-level resources. They provide the

implementation for behaviors.

All the design patterns covered in this course are built on this

dependency inversion principle.

Low Level Dependency

In order to better understand the dependency inversion

principle, let us examine low-level dependency. In a low-level

dependency, the client classes name and make direct

references to a concrete class. Subsystems are directly

dependent on each other, so the client class will directly

reference some concrete class in the enterprise subsystem,

which will directly reference some concrete class in your

backend.

Let us examine this as code.

public class ClientSubsystem {

public QuickSorting enterpriseSorting;

/* Constructors and other attributes go here */

public void sortInput(List customerList) {

this.enterpriseSorting.quickSort(customerList);

}

}

Design Patterns | 82

This has a low-level dependency. There is direct naming and

referencing to the concrete class, QuickSorting, which is used

in this example to sort a list sent to the system by a user.

However, if a different sorting class called MergeSort were to

be implemented, significant changes would need to be made to

the ClientSubsystem class. The type of sorting class would

have to change, as well as the sorting method call. This would

require a great deal of work every time a change needed to be

made to the sorting algorithm.

public class ClientSubsystem {

public MergeSorting enterpriseSorting;

/* Constructors and other attributes go here */

public void sortInput(List customerList) {

this.enterpriseSorting.mergeSort(customerList);

}

}

Such large changes are impractical and could entail unexpected

side effects if old references are missed. The dependency

inversion principle addresses this issue by generalizing

low-level functionality into interfaces or abstract classes. This

way, when alternative implementations are offered, they can be

used with ease.

High-Level Dependency

In high-level dependency, the client class is dependent on a

high-level generalization rather than a low-level concrete class,

allowing changes to be more easily made to resources. The

generalization gives a degree of indirection by allowing

behaviors to be invoked in a concrete class through an

interface.

High-level dependency prevents the client class from being

directly coupled with a specific concrete class. A client class is

dependant on expected behaviors, not on a specific

implementation of behaviors.

When the dependency inversion principle and high-level

dependency are used, the overall architecture of a system will

look similar to design patterns explored earlier in this course.

The diagram below illustrates this.

Design Patterns | 83

Behaviors are generalized across each subsystem into an

interface. The concrete classes of each subsystem will then

implement the interface. Client classes will make references to

the interface instead of directly to the concrete classes.

Let us examine this as code.

public class ClientSubsystem {

public Sorting enterpriseSorting;

public ClientSubsystem(Sorting concreteSortingClass) {

this.enterpriseSorting = concreteSortingClass;

}

public void sortInput(List customerList) {

this.enterpriseSorting.sort(customerList);

}

}

A Sorting interface is declared instead of a concrete class in

this example. This allows you to determine which instance of

Sorting class you want the ClientSubsystem to have during

instantiation. The sorting behavior can also be generalized into

a method called sort in the interface, and the method call does

not need to change in the ClientSubsystem.

Object-oriented designs should use method calls through a

level of indirection. The dependency inversion principle

facilitates the use of indirections by writing dependencies to

Design Patterns | 84

generalizations, rather than to a concrete class. It helps

insulate parts of a system from specific implementations of

functionality. It is best practice to program to generalizations,

like interfaces and abstract classes, rather than directly to a

concrete class.

The dependency inversion principle is a means to:

● Change the referencing of concrete classes from being

direct to indirect.

● Generalize the behaviors of your concrete classes into

abstract classes and interfaces.

● Have client classes interact with your system through a

generalization rather than directly with concrete

resources.

● Put emphasis on high-level dependency over low-level

concrete dependency.

Using the dependency inversion principle may seem like extra

work, but the effort is worthwhile, particularly if you are

working on a large system. If a system is too heavily coupled,

changes will be difficult to make. This principle helps ensure a

robust software solution.

Composing Object Principle

Tight coupling is a common problem in system design.

Coupling can be managed using the design principles that

underlie design patterns. The design patterns examined in this

course use generalization, abstraction, and polymorphism - as

a means of indirection and a means to reduce coupling.

Inheritance can be a great way to achieve a high level of code

reuse; it entails a cost of tightly coupling superclasses with

their subclasses. Subclasses inherit all attributes and methods

of a superclass, as long as access modifiers are not private.

This means that if you have multiple levels of inheritance, a

subclass at the bottom of the inheritance tree can potentially

provide access to attributes and behaviors of all the

superclasses.

The coupling objects principle is a means of circumventing

this problem, by providing a means for a high amount of code

reuse without using inheritance. The principle states that

classes should achieve code reuse through aggregation rather

than inheritance. Aggregation and delegation offer less

coupling than inheritance, since the composed classes do not

Design Patterns | 85

share attributes or implementations of behaviors, and are more

independent of each other. This means they have an

“arms-length” relationship.

Design patterns like the composite design pattern and

decorator design pattern use this design principle. These two

patterns compose concrete classes to build more complex

objects at run time. The overall behavior comes from the

composed sum of the individual objects. An object can reuse

and aggregate another object to delegate certain requests to it.

The system should be designed so that concrete classes can

delegate tasks to other concrete classes.

The way classes will compose themselves is determined during

design. Objects can be composed recursively and uniformly, or

they can be composed of other objects that have a consistent

type. This is illustrated in the UML diagram below.

Composing objects provides your system with more flexibility.

When objects are composed, it is not required to find

commonalities between two classes and couple them together

with inheritance. Instead, classes can be designed to work

together without sharing anything. This provides flexibility,

especially if the system requirements change. Inheritance may

require restructuring the inheritance tree.

Composing objects also allows the dynamic change of

behaviors of objects at run time. A new overall combination of

behavior can be built by composing objects. Inheritance, on the

other hand, requires behaviors of classes to be defined during

compile-time, so they cannot change while the program is

running.

Design Patterns | 86

In addition to these advantages, there are disadvantages to

keep in mind for composition. In composition, implementations

for all behavior must be provided, without the benefit of

inheritance to share code. There could be very similar

implementations across classes, which could take time and

resources. With inheritance, common implementation is simply

accessed within the superclass, so each subclass does not have

to have its own implementation of shared behavior.

In summary, the composing objects principle will:

● Provide a means of code reuse without the tight coupling

of inheritance.

● Allow objects to dynamically add behaviors at run time.

● Provide your system with more flexibility, so that less

time needs to be spent on system updates.

Although composing provides better flexibility and less

coupling, while maintaining reusability, there is a place for

inheritance. In order to determine which design principle is

appropriate to use, you must assess the needs of your system,

and choose what best fits the situation and problem at hand.

Interface Segregation Principle

Many design patterns that this course has explored use

generalizations of concrete classes, presented as interfaces for

client classes to indirectly invoke the behaviors of the concrete

classes. This helps client classes be less dependent on concrete

classes and allows for changes to be made more easily. In

Design Patterns | 87

general, your design should strive to program to interfaces

instead of concrete classes.

However, if there is only a single interface that holds all the

methods for all the clients, then all clients will have to

unnecessarily implement all other clients’ methods just to

make their interface compile. Not all behaviours are shared by

clients, so why should they be stored in the same interface?

This forces dependency.

The interface segregation principle helps tackle this issue

so that you won’t run into dependency issues or be forced to

generalize everything into one interface. The principle states

that a class should be forced to depend on methods it does not

use. This means that any classes that implement an interface

should not have “dummy” implementations of any methods

defined in the interfaces. Instead, large interfaces should be

split into smaller generalizations.

Let us examine this through an example. Imagine creating a

checkout system for a grocery store that allows customers to

pay for their goods in two ways: they can use an automated

machine, or they can approach a human cashier operating a till.

Although the purpose of these two options can be generalized

with an interface, there are some behaviors that are not shared

between the two.

A poor interface design would entail a single interface for both

the HumanCashier class and the SelfServeMachine class.

This interface would include all the methods for both classes,

whether or not they fit both classes. These would be “dumb”

implementations that do not do anything depending on which

class called upon the interface.

A good interface design would apply the interface segregation

principle and split the interface into two smaller ones. This

allows each interface to be more accurate with its description of

expected behaviours. The interface segregation principle would

select the correct combinations of interfaces a concrete class

should implement. Represented as a UML diagram, this would

look as below.

Design Patterns | 88

The HumanCashier class can implement both interfaces, and

the SelfServeMachine class would only need to implement the

ICashier interface. This way, both concrete classes only need

to provide implementations for the interfaces that generalize

their specific functionality. The interfaces should be kept

separate, and the HumanCashier class can implement two

interfaces. This is preferable to have an IHumanWorker

interface that inherits the ICashier interface, as the

IHumanWorker interface would inherit behavioral descriptions

of a cashier, which may not always apply to an employee.

Remember, the single inheritance rule in Java applies to

classes, but not to interfaces. An interface can inherit from as

many interfaces as it wants to.

Interfaces are an integral part of object-oriented systems. They

reduce coupling by generalizing concrete classes. However,

they must be used properly. Large interfaces in and of

themselves are not necessarily a poor design choice, but you

need to take into account the context of your system to decide

if the interface segregation principle should be applied and if

the interfaces should be split into smaller generalizations.

Note that it will not always be clear how to properly segregate

your interfaces, or to predict future changes in requirements

that will need interfaces to be split up. Well-defined interfaces

Design Patterns | 89

are important – interfaces are descriptions of what parts of your

system can do. The better the description the easier it will be to

create, update, and maintain software.

In summary, the interface segregation principle states that:

● A class should not be forced to depend on methods it

does not use.

● Interfaces should be split up in such a way that they can

properly describe the separate functionalities of your

system.

Principle of Least Knowledge

The principle of least knowledge states that classes should

know and interact with as few other classes as possible. This

principle arises from one means of managing complexity,

which suggests that a class should be designed so that it does

not need to know about and depend upon almost every other

class in the system. If classes have a narrow view of what other

classes it knows, then coupling is decreased, and a system is

easier to maintain.

This principle is also realized in a rule known as the Law of

Demeter. The Law of Demeter is composed of several different

rules that provide guidelines as to what kind of method calls a

particular method can make – in other words, they help

determine how classes should interact. This design principle

focuses on how method calls should be made, rather than on

specific ways of structuring the design of a system.

The four rules of the Law of Demeter as summarized below: A

method, M, of an object should only call other methods if they

are:

1. Encapsulated within the same object

2. Encapsulated within an object that is in the parameters

of M

3. Encapsulated within an object that is instantiated inside

the M

4. Encapsulated within an object that is referenced in an

instance variable of the class for M

Let us examine each of these rules in turn.

The first rule states that a method, M, in an object, O, can call

on any other method within O itself. In other words, a method

Design Patterns | 90

encapsulated within a class is allowed to call any other method

also encapsulated within the same class.

The second rule states that a method, M, can call the methods

of any parameter P. As a method parameter is considered local

to the method, methods in the class for the parameter are

allowed to be called.

The third rule states that a method, M, can call a method, N, of

an object, I, if I is instantiated within M. This means that if a

method makes a new object, then the method is allowed to use

that new object’s methods. The object is considered local to

the creating method, the same way an object is considered

local when it is a parameter.

The fourth rule states that in addition to local objects, any

method, M, in object O, can invoke methods of any type of

object that is a direct component of O. This means that a

method of a class can call methods of the classes of its

instance variables. If a class has direct reference to the Friend

class, any method inside of O is allowed to call any method of

Friend class. See below for an example of this rule in Java code.

public class Friend {

public void N() {

System.out.println("Method N invoked");

}

}

public class O {

public Friend I = new Friend();

public void M() {

this.I.N();

System.out.println("Method M invoked");

}

}

The Law of Demeter may seem complicated and abstract, but at

its core, boils down to the idea that a method should not be

allowed to access another method by “reaching through” an

object. This means that a method should not invoke methods

of any object that is not real.

The four rules explained above help outline what is considered

a local object. These objects should be passed in through a

Design Patterns | 91

parameter, or they should be instantiated within a method, or

they should be in instance variables. This allows methods to

directly access the behaviors of local objects.

These conditions commonly occur when you have a chain

method calls to objects you should not know about, or when

you use methods from an “unknown” type of object that is

returned back to you from your local method call. A good

metaphor for this is driving a car. When you drive a car, you do

not issue individual commands to every component of the car.

Instead, you simply tell the car to drive, and the car will know

to deal with its components.

Another way you can “reach through” an object is when the

method receives an object of an unknown type as a return

value, and you make method calls to the returned object.

Returned objects must be of the same type as:

● Those declared in the method parameter

● Those declared and instantiated locally in the method

● Those declared in instance variable of the class that

encapsulates the method

The Law of Demeter defines how classes should interact with

each other. They should not have full access to the entire

system because this causes a high degree of coupling. A class

should only interact with those that are considered immediate

“friends”. This prevents unwanted effects from cascading

through the entire system.

Although the Law of Demeter can help reduce coupling, you

should recognize that it also requires more time when

designing and implementing a system. It may not always be

feasible to follow the Law of Demeter due to limitations of time

and resources. Other times, some degree of coupling may be

unavoidable, at which point, you’ll need to decide how much

coupling is tolerable.

Anti-Patterns and Code Smells

No matter how well you design your code, there will still be

changes that need to be made. Refactoring helps manage

this. It is the process of making changes to your code so that

the external behaviours of the code are not changed, but the

internal structure is improved. This is done by making small,

incremental changes to the code structure and testing

Design Patterns | 92

frequently to make sure these changes have not altered the

behavior of the code.

Ideally, refactoring changes are made when features are added,

and not when the code is complete. This saves time and makes

adding features easier.

Changes are needed in code when bad code emerges. Just like

patterns emerge in design, bad code can emerge as patterns as

well. These are known as anti-patterns or code smells.

The book Refactoring by Martin Fowler has identified many of

these anti-patterns. Code smells help “sniff out” what is bad in

the code. This book also provides ways to reactor changes in

order to transform the code, and “improve the smell”.

This next lesson will examine some of the code smells explored

in Fowler’s book. For more information on these code smells,

and proposed resolutions to them, Fowler’s book is an

excellent resource. You can find bibliographic information

about the book in Course Resources.

Comments

One of the most common examples of bad code is comments.

This code smell can occur between two extremes. If no

comments are provided in the code, it can be hard for someone

else, or even the original developer, to return to the code after

some time has passed and tried to understand what the code is

doing or should be doing.

On the other hand, if there are too many comments, they might

get out of sync as the code changes. Comments can be a

“deodorant” for bad-smelling code. The use of a lot of

comments to explain complicated design can indicate that bad

design is being covered up.

There are other ways that comments can indicate bad code,

though. If the comments take on a “reminder” nature, they

indicate something that needs to be done, or that if a change is

made to one section in the code, it needs to be updated in

another method -- these are two examples that indicate bad

code.

Comments might reveal that the programming language

selected for the software is not appropriate. This could happen

if the programming language does not support the design

Design Patterns | 93

principles being applied. For example, when Java was in its

early years, the concept of generics did not exist yet.

Developers would use comments to explain what they were

doing with code when casting types. The use of comments is

common in young programming languages! However, generics

have now been built into Java.

Comments are very useful for documenting application

programmer interfaces (APIs) in the system and for

documenting the rationale for a particular choice of data

structure or algorithm, which makes it easier for others to

understand and use the code. But comments should be used in

balance, or they may indicate a bad smell!

Duplicate Code

Duplicated code occurs when blocks of code exist in the

design that is similar but has slight differences. These blocks of

code appear in multiple places in the software, which can be a

problem, because if something needs to change, then the code

needs to be updated in multiple places. This applies to adding

functionalities, updating an algorithm, or fixing a bug.

Instead, if the code only needed to be updated in one location,

it is easier to implement the change. It also reduces the chance

that a block of code was missed in an update or change.

This anti-pattern relates to the D.R.Y. principle, or “Don’t

Repeat Yourself”, which suggests that programs should be

written so that they can perform the same tasks but with less

code. You can review this rule in the first course of this

specialization.

Long Method

The long method anti-pattern suggests that code should not

have long methods. Long methods can indicate that the

method is more complex or has more occurring within it than it

should.

Determining if a code is too long can be difficult. There is even

some debate if length of code is even a good measure of code

complexity. Some methods, such as setting up a user interface,

can be naturally long, even if focused on a specific task.

Sometimes a long method is appropriate.

Design Patterns | 94

This anti-pattern may also depend on the programming

language for the system. For example, Smalltalk methods tend

to be short, with a 15-line average. Designs in this language

tend to have highly cohesive classes and methods, but are also

highly coupled. Context is therefore important in this

anti-pattern.

Large Class

The large class anti-pattern suggests that classes should not

be too large. This is similar to the long pattern above.

Large classes are commonly referred to as God classes, Blob

classes, or Black Hole classes. They are classes that continue to

grow and grow, although they typically start out as

regular-sized classes. Large classes occur when more

responsibilities are needed, and these classes seem to be the

appropriate place to put the responsibilities. Over time,

however, these responsibilities might attract more

responsibilities, and the class continues to get larger and larger

and take on more and more responsibilities.

This growth will require extensive comments to document

wherein the code of the class certain functionalities exist.

Comments, as discussed previously in this lesson, are another

indicator of bad code. It is helpful to catch this code smell

early, as once a class is too large, it can be difficult and

time-consuming to fix.

Classes should have an explicit purpose to keep the class

cohesive, so it does one thing well. If functionality is not

specific to the class’s responsibility, it may be better to place it

elsewhere.

Design Patterns | 95

Data Class

The data class anti-pattern is on the opposite end of the

spectrum of the large class. It occurs when there is too small of

a class. These are referred to as data classes. Data classes are

classes that contain only data and no real functionality. These

classes usually have only getter and setter methods, but not

much else. This indicates that it may not be a good abstraction

or a necessary class.

An example of a data class would be a 2D point class that only

has x and y coordinates. Could something else be placed in the

class? What are the other classes manipulating this data? Would

some of their behaviors be better placed in one of the data

classes? The 2D point class could have various transformation

functions that move the point. This would make better code.

Data Clumps

Data clumps are groups of data appearing together in the

instance variables of a class, or parameters to methods.

Consider this code smell through an example. Imagine a

method with integer variables x, y, and z.

public void doSomething (int x, int y, int z) {

...

}

If there are many methods in the system that perform various

manipulations on the variables, it is better to have an object as

the parameter, instead of using the variables as parameters

repeatedly. That object can be used in its place as a parameter.

public class Point3D {

private int x;

private int y;

private int z;

public int getX() {

return x;

}

public int getY() {

Design Patterns | 96

return y;

}

public int getZ() {

return z;

}

public void setX(int newX) {

x = newX;

}

public void setY(int newY) {

y = newY;

}

public void setZ(int newZ) {

z = newZ;

}

}

Be careful not to just create data classes, however. The classes

should do more than just store data. The original

doSomething() method, or a useful part it, might be added to

the Point3D class to avoid this.

Long Parameter List

Another code smell is having long parameter lists. A method

with a long parameter list can be difficult to use. They increase

the chance of something going wrong. The common solution to

reduce the number of parameters is often to have global

Design Patterns | 97

variables but these have issues of their own and generally

should be avoided.

Methods with long parameter lists require extensive comments

to explain what each of the parameters does and what it should

be. Extensive commenting, as explained earlier in this lesson, is

another code smell.

If long parameter lists are not commented, however, then it

may be necessary to look inside the implementation to see how

they are used which breaks encapsulation.

The best solution for long parameter lists is to introduce

parameter objects. A parameter object captures context. They

are common in graphics libraries, where toolkits are passed

into an object to provide context for a graphics routine. Instead

of setting details, such as the pen color, line width, pen shape,

opacity, etc., as individual parameters, this information would

be provided as a parameter object. When the program needs to

execute a method, all of the information about what the stroke

should look like can be an individual parameter value.

Divergent Change

Some code smells occur when making changes to the code

itself. A divergent change is one such code smell. It occurs

when you have to change a class in many different ways, for

many different reasons. This relates to the large class code

smell, where a large class has many different responsibilities.

These responsibilities may need to be changed in a variety of

ways, for a variety of purposes. Poor separation of concerns is

therefore a common cause of divergent change.

Classes should have only one specific purpose because this

reduces the number of reasons that the code would need to

change, and reduces the variety of changes needed to be

implemented. If a class is being changed in multiple ways, then

this is a good indicator that the responsibilities of the class

should be broken up into separate classes, and responsibilities

should be extracted into their own classes.

Separation of concerns resolves two code smells – large class

and divergent change.

Shotgun Surgery

Design Patterns | 98

Shotgun surgery is a code smell that occurs when a change

needs to be made to one requirement, and numerous classes

all over the design need to be touched to make that one

change. In good design, a small change is ideally localized to

one or two places (although this is not always possible).

This is a commonly occurring code smell. It can happen if you

are trying to add a feature, adjust code, fix bugs, or change

algorithms. If changes need to be made all over the code, then

the chances of missing a change or creating an issue elsewhere

increase.

Modular code is not always an option, however. Some changes

require shotgun surgery no matter how well designed the code

is. For example, changing a copyright statement or licensing

will require changing every file in the system to update the

block of copyright text.

The shotgun surgery smell is normally resolved by moving

methods around. If a change requires you to make changes to

many methods in different classes, then that can be an

indicator that the methods may be better consolidated into one

or two classes. However, you must be careful not to move so

many methods into one class because that it becomes a large

class code smell.

If a change in one place leads to changes in other places, then

this indicates that the methods are related in some way.

Perhaps there is a better way to organize them. If not, then you

may have to deal with it as it is.

Feature Envy

Feature envy is a code smell that occurs when there is a

method that is more interested in the details of a class other

than the one it is in. If two methods or classes are always

talking to one another and seem as if they should be together,

then chances are this is true.

Design Patterns | 99

Inappropriate Intimacy

Inappropriate intimacy is a code smell that occurs when two

classes depend too much on one another through two-way

communication.

If two classes are closely coupled, e.g., so a method in one

class calls methods of the other, and vice versa, then it is likely

necessary to remove this cycle. Methods should be factored out

so both classes use another class. At the very least, this makes

communication one way and should create looser coupling.

Cycles are not always necessarily a bad thing. Sometimes, they

are necessary. But, if there’s a way to make the design simpler

and easier to understand, then it is a good solution.

Message Chains

Message chains is a code smell that occurs when the code

has long message chains where you are calling, and get an

object back, and then calling again, and getting another object.

This is a bad message chain, and it can cause rigidity, or

complexity in your design, and makes code harder to test

independently. It also potentially violates the Law of Demeter,

which specifies which methods are allowed to be called.

In a bad message chain, to find an object in the code, it might

be necessary to navigate the chain and these object’s

dependencies. However, particular navigation should not be

baked into objects. If the design were reworked, and the

dependencies were restructured, it will break the code, which is

a sign of a brittle design.

Long chains of calls could be appropriate, however, if they

return a limited set of objects that methods are allowed to be

called on. If those objects follow the Law of Demeter, then the

chain is appropriate.

Primitive Obsession

Primitive obsession is a code smell that occurs when you

rely on the use of built-in types too much. Built-in types, or

primitives, are things like ints, longs, floats, or strings.

Although there will be a need for them in the code, they should

only exist at the lowest levels of the code. Overuse of primitive

Design Patterns | 100

types occurs when abstractions are not identified, and suitable

classes are not defined.

Theoretically, almost everything in a system could be defined

or encoded as Strings and put into Arrays. In fact, in the

1960s, this is how code looked. Languages have evolved

though, to allow for defining your own types for better

abstraction. Otherwise, you have a non-OO way of thinking. If

everything is stored as a string, then a key abstraction could be

buried in the detailed code and would not be evident when

looking at the design of the system, such as through a UML

diagram. There would be no clear separation between strings.

If you are using primitive types often at a high level, then it is a

good indicator that suitable classes are not being declared, and

there is a primitive obsession code smell in the system.

Switch Statements

Switch statements are code smells that occur when switch

statements are scattered throughout a program. If a switch is

changed, then the others must be found and updated as well.

Although there can be a need for long if/else statements in

the code, sometimes switch statements may be handled better.

For example, if conditionals are checking on type codes or the

types of something, then there is a better way of handling the

switch statements. It may be possible to reduce conditionals

down to a design that uses polymorphism.

Speculative Generality

The code smell speculative generality occurs when you

make a superclass, interface, or code that is not needed at the

time, but that may be useful someday. This practice introduces

generality that may not actually help the code, but

“over-engineers” it.

In Agile development, it is best to practice Just in Time

Design. This means that there should be just enough design to

take the requirements for a particular iteration to a working

system. This means that all that needs to be designed for are

the set of requirements chosen at the beginning of an iteration.

All other requirements in a backlog can be ignored, as they

may never actually be needed.

Design Patterns | 101

Software changes frequently. Clients can change their mind at

any time, and drop requirements from the backlog. Your design

should stay simple, and time should not be lost on writing code

that may never be used.

If generalization is necessary, then it should be done. This

change may take longer at the time, compared to if it is set up

beforehand, but it is better than writing code that may not be

needed down the line.

Refused Request

A refused request code smell occurs when a subclass inherits

something but does not need it. If a superclass declares a

common behavior across subclasses, and subclasses are

inheriting things they do not need or use, then they may not be

appropriate subclasses for the superclass. Instead, it may make

more sense for a stand-alone class. Or perhaps the unwanted

behaviors should not be defined in the superclass. Finally, if

only some subclasses use them, then it may be better to define

those behaviors in the subclasses only.

Code smells help identify bad code and bad design. It is good

practice to review your code frequently for code smells to

ensure that the code remains reusable, flexible, and

maintainable.

This brings us to the end of this course. The next course in this

specialization is on Software Architecture.

Design Patterns | 102

Course Resources

Course Readings

● Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).

Design Patterns: Elements of Reusable Object-Oriented

Software. Upper Saddle River, NJ: Addison-Wesley

Professional.

● Fowler, M. (1999). Refactoring: Improving the Design of

Existing Code. Reading, MA: Addison-Wesley.

Glossary

Word Definition

“Don’t Repeat

Yourself” rule

(D.R.Y. rule)

A rule relating to the design principle of

generalization. D.R.Y. suggests that we should

write programs that are capable of performing the

same tasks but with less code. Code should be

reused because different classes or methods can

share the same blocks of code. D.R.Y. helps make

systems easier to maintain.

Adapter design

pattern

A structural pattern that facilitates communication

between two existing systems by providing a

compatible interface.

Anti-patterns Patterns of bad code commonly emerge in software

design. Also known as code smells.

Base object An object in an “aggregation stack” that contains

no other object and has its own set of behaviors.

Behavioral

design patterns

Patterns that focus on how objects distribute work,

and how they collaborate together to achieve a

common goal.

Boundary object A type of object, usually introduced in the solution

space of a software problem that connects to

services outside of the system.

Chain of

responsibility

design pattern

A design pattern that is a change of objects

responsible for handling requests.

Cloning Duplication of an object.

Design Patterns | 103

Code smells Patterns of bad code that commonly emerge in

software design. Also known as anti-patterns.

Coding to an

interface

Occurs in factory objects, where changes need only

be made to a concrete instantiation and not the

client method.

Command

design pattern

A behavioral design pattern that encapsulates a

request as an object of its own.

Comments An anti-pattern that appears if there are a lot of

comments in a code, which can indicate that a

developer is relying on those comments to explain

what the code does, thereby covering up a bad

design.

Composite

design pattern

A structural pattern used to achieve two goals: to

compose nested structures of objects, and to deal

with the classes for these objects uniformly.

Concrete

instantiation

The act of instantiating a class to create an object

of a specific type.

Control object A type of object, usually introduced in the solution

space of a software problem, that receives events

and coordinates actions.

Controller The part of a MVC pattern that is responsible for

interpreting user requests and changing the model.

Coupling

objects principle

An underlying design principle for design patterns.

The principle states that classes should achieve

code reuse through aggregation rather than

inheritance.

Creational

design patterns

Patterns that tackle how to create or clone new

objects.

Data class An anti-pattern that occurs when a class is too

small. Data classes contain only data and no real

functionality. They might have getter and setter

methods and not much else.

Data clumps A code smell that occurs when groups of data

appear together in the instance variables of a class,

or parameters to methods.

Decorator

design pattern

A structural pattern that allows additional

behaviors or responsibilities to be dynamically

attached to an object, through the use of

aggregation to combine behaviors at run time.

Design Patterns | 104

Dependency

inversion

principle

An underlying design principle for design patterns.

The principle states that high-level modules should

depend on high-level generalizations, and not on

low-level details.

Design patterns A reusable solution to a problem identified in

software design.

Divergent

change

A code smell that occurs when you have to change

a class in many different ways, for many different

reasons.

Duplicated code An anti-pattern that occurs when blocks of code are

similar, but have slight differences, and appear in

multiple places in the software.

Entity object A type of object, often identified in the problem

space, that represents items used in the

application.

Façade A wrapper class that encapsulates a subsystem in

order to hide the subsystem’s complexity, and acts

as a point of entry into a subsystem without adding

more functionality in itself.

Façade design

pattern

The façade design pattern is a structural pattern

used to provide a single, simplified interface for

client classes to interact with a subsystem.

Factory Method

pattern

A creational pattern, which uses a factory method

in the same class to create objects.

Factory object An object in which object creation happens,

allowing methods that use factory objects to focus

on other behavior.

Feature envy A code smell that occurs when a method is more

interested in the details of a class other than the

one it is in.

Gang of Four These are the four authors, Erich Gamma, Richard

Helm, Ralph Johnson, and John Vlissides, who

wrote the famous book on design patterns, Design

Patterns: Elements of Reusable Object-Oriented

Software (1994).

Gang of four’s

design pattern

catalog

A catalog of design principles was developed by

the gang of four in their famous book, Design

Patterns: Elements of Reusable Object-Oriented

Software (1994).

High-level

dependency

A form of dependency where a client class is

dependent on a high-level generalization, instead

of a low-level concrete class.

Design Patterns | 105

Inappropriate

intimacy

A code smell that occurs when two classes depend

too much on one another through two-way

communication.

Information

hiding

Allows modules in a system to give others the

minimum amount of information needed to use

them correctly and “hide” everything else. This

allows modules to be worked on separately.

Inheritance According to the principle of generalization,

repeated, common, or shared characteristics

between two or more classes are taken and

factored into another class. Subclasses can then

inherit the attributes and behaviors of this

generalized or parent class.

Interface

segregation

principle

An underlying design principle for design patterns.

The principle states that a class should not be

forced to depend on methods it does not use.

Invoker An object in a command pattern, that invokes the

command objects to complete whatever task it is

supposed to do.

Just in Time

design

An agile development design that suggests that

there should be just enough design to take the

requirements for a particular iteration to a working

system.

Large class An anti-pattern that occurs when a class is too

long. Large classes may also be referred to as God

classes, Blob classes, or Black Hole classes.

Law of Demeter A law that states that shares the principle of least

knowledge, classes should know about and interact

with as few other classes as possible, but that is

composed of several rules that provide a guideline

as to what kind of method calls a particular method

can make.

Lazy creation Occurs when an object is not created until it is truly

needed.

Letting the

subclasses

decide

In the Factory Method pattern, the class that uses a

factory method is specialized or subclassed. These

subclasses must define their own factory method.

This is known as “letting the subclasses decide”

how objects are made.

Long method An anti-pattern that occurs when code has long

methods.

Long parameter

lists

A code smell that occurs when there is a long

parameter list.

Design Patterns | 106

Low-level

dependency

A form of dependency where the client classes are

naming and making direct references to a concrete

class.

Message chains A code smell that occurs when there is a long

message chain; violates the Law of Demeter and

which methods are allowed to be called.

Model The part of a MVC pattern that contains the

underlying data and logic that users want to see

and manipulate through an interface.

Model, View,

Controller (MVC)

pattern

A pattern that divides the responsibilities of a

system that offers a user interface into three parts:

model, view, and controller.

Non-OO A way of thinking where everything in a system is

defined or encoded as strings and put into arrays,

instead of using abstraction.

Observer Objects in a design pattern, that rely on a

subject-object to inform them of changes to the

subject.

Observer design

pattern

A behavioral design pattern where a subject keeps

a list of observers.

Open/closed

principle

An underlying design principle for design patterns.

The open/closed principle states that classes

should be open for extension, but closed to

change.

Pattern

language

A pattern language is a collection of patterns that

are related to a certain problem space.

Polymorphism In object-oriented languages, polymorphism is

when two classes have the same description of

behavior but the implementation of the behavior

may be different.

Primitive A built-in type of a system, such as ints, longs,

floats, or strings.

Primitive

obsession

A code smell occurs when there is too much

reliance on built-in types in the system.

Principle of

least knowledge

An underlying design principle for design patterns.

The principle states that classes should know about

and interact with as few other classes as possible

Protection proxy A proxy class used to control access to the real

subject class.

Design Patterns | 107

Proxy A simplified, or lightweight version, of an original

object.

Proxy design

pattern

A structural pattern that allows a proxy class to

represent a real “subject” class.

Reaching

through

A term that means that another object needs to be

used to pass along a request, or that methods of

objects are being used outside of what is

considered local.

Recursive

composition

Another name for composite design patterns. Also,

a concept that allows objects to be composed of

other objects that are of a common type.

Refactoring The process of making changes to code so that the

external behaviors of the code are not changed,

but the internal structure is improved.

Refused request A code smell occurs when a subclass inherits

something but does not need it.

Remote proxy A proxy class that is local while the real subject

class exists remotely.

Separation of

concerns

A principle of software design, which suggests that

software should be organized so that different

concerns in the software are separated into

different sections and addressed effectively.

Shotgun surgery A code smell occurs when a change needs to be

made to one requirement, and numerous classes

all over the design need to be touched to make

that one change.

Singleton design

pattern

A creational pattern in which there is only one

object of a class.

Spaghetti code Tangled or structureless software code.

Speculative

generality

A code smell occurs when a superclass, interface,

or code is created but that is not needed at the

time, and instead may be useful someday.

State design

pattern

A behavioral design pattern that can occur as

objects in your code are aware of their current

state, and thus can choose an appropriate behavior

based on their current state. When the current state

changes, this behavior can be altered.

Structural

design patterns

Patterns that describe how objects are connected

to each other.

Design Patterns | 108

Subject An object in an observer design pattern that keeps

a list of observers.

Switch

statements

A code smell occurs when switch statements are

scattered throughout a program, and changing one

requires finding all of them to update.

Template

method pattern

A behavioral design pattern that defines an

algorithm’s steps generally, deferring the

implementation of some steps to subclasses. In

other words, it is concerned with the assignment of

responsibilities.

View The part of a MVC pattern that allows users to see

all or part of the model.

Virtual proxy A proxy class is used in place of a real subject class

that is resource-intensive to instantiate.

Design Patterns | 109

